
AD-A238 830 (1

*USERS MANUAL
UM 7-91
1 FEBRUARY 1991

m 4

JOINT DA TA SYSTEMS

SUPPORT CENTER

• USERS MANUAL FOR THE GRAPHIC
INFORMATION PRESENTATION SYSTEM

(GIPSY)

APPROVED FOR
PUBLIC RELEASE

DISTRIBUTION UNLIMITED

REPRODUCED BYN
U.S. DEPARTMENT OF COMMERCE

NATIONAL TECHNICAL
INFORMATION SERVICE .
SPRINGFIELD. VA 22161

RECORD OFCHANGES

Change Dated Date Entered Signature of Person Making Change
Number

DCA FORM 65
MAR 87

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

DEFENSE INFORMATION SYSTEMS AGENCY
DEFENSE SYSTEMS SUPPORT ORGANIZATION

WASHINGTON. D.C. 20301-7010

IN REPLY JNGG
REFER TO

TO: RECIPIENTS

SUBJECT: Change 1 to GIPSY Users Manual, UM 7-91

1. This is change 1 to JDSSC Users Manual UM 7-91 titled
Graphic Information Presentation System (GIPSY) Users Manual
(UM 7-91), dated 1 February 1991. Remove obsolete paqes and
destroy them in accordance with applicable security regulations
and insert the new pages as indicated below:

Remove Pages Insert New Pages

iv through vii iv through vii
1-5 through 1-8 1-5 through 1-8.2
2-3 through 2-6 2-3 through 2-6.2
3-17 through 3-18 3-17 through 3-18
3-23 through 3-24 3-23 through 3-24.2
3-29 through 3-38 3-29 through 3-38
3-43 through 3-44 3-33 through 3-44
3-47 through 3-48 3-47 through 3-48
H-I through H-10 H-I through H-10
I-i through 1-8 1-1 through 1-8

2. The effective date of these change pages is 6 May 1992.

3. When these changes have been made, post an entry in the
Record of Changes for the manual a d file this let er before
the title page.

36 Enclosures a/s THOMAS R. E SON
Deputy Director, NMCS ADP

S

JOINT DATA SYSTEMS SUPPORT CENTER

Users Manual UM 7-91

1 February 1991

USERS MANUAL

FOR THE

GRAPHIC INFORMATION PRESENTATION SYSTEM (GIPSY)

SUBMITTED BY:

Jeanne L. Muenzen Thomas R. Epperson
Chief, Information Deputy Director

Systems Branch NMCS ADP Directorate

Copies of this document may be obtained from the Defense Technical Information.C er, Cameron Station, Alexandria, Virginia 22304-6145.

Approved 10L public release; distribution unlimited.

ACKNOWLEDGMENT

This document was prepared under the general direction of the Chief,

Information Systems Branch (JNGG); Chief, General Applications Division (JNG);
and the Deputy Director, National Military Command System (NMCS) Automated
Data Processing (ADP) Directorate (JN).

0i

CONTENTS

Section Page

ACKNOWLEDGMENT ii

ABSTRACT..................................xi

1.GENERAL 1-1
1.1 Purpose of the Users Manual. 1-1
1.1.1 Project Orientation 1-1
1.1.1.1 Introduction to Graphics..................1-1
1.1.1.2 Purpose of Project.......................1-2
1.1.1.3 Scope of Project........................1-2

1..14Audience..........................1-2
1.1.1.5 Essential Considerations..................1-2
1.2 Project References.........................1-5
1.3 Terms and Abbreviations1-6
1.4 Security and Privacy........................1-9

2. SYSTEM SUMMARY..........................2-1
2.1 System Overview 2-1
2.2 System Operation..........................2-3
2.3 System Configuration........................2-3
2.4 System Organization 2-5
2.5 System Performare.......................2-5.2.6 Contingencies and Alternate Modes of Operation2-5
2.7 Database/Data Bank.......................2-5
2.8 General Description of Inputs, Processing, outputs 2-6
2.8.1 Input and Processing Operations. 2-6
2.8.2 Language Overview 2-9
2.8.3 outputs. 2-12

3. STAFF FUNCTIONS RELATED TO TECHNICAL OPERATIONS. 3-1
3.1 Initiation Procedure......................3-1
3.2 GIPSY Language: Syntax and Semantics 3-1
3.2.1 Composition Rules 3-3
3.2.2 CIPSY Command Options3-6
3.2.3 Classification, Title, and Auxiliary Functions 3-9
3.2.3.1 Classification Marking 3-9
3.2.3.2 Report Titles. 3-11
3.2.3.2.1 Modifying Title Lines 3-11
3.2.3.3 Language Input 3-11
3.2.3.4 Changing Language Input Modes 3-14
3.2.3.5 Operating Environment Attributes................3-14
3.2.3.5.1 Define Terminal Command 3-16
3.2.3.6 Saving GIPSY Data Structures.................3-18
3.2.3.6.1 Saving the File Descriptor Table (FDT). 3-18
3.2.3.6.2 Saving the P-ocess Control Statements (FCS) 3-19
3.2.3.6.3 Saving the Graphic Data Set (GDS)/Report. 3-19

iii

Section P ag

3.2.3.6.4 Saving the Qualified Data File (QDF)............3-194
3.2.3.6.5 Saving thc Qualified Descriptor Table (QDT) 3-20
3.2.3.6.6 Saving tne Directive Action and File Control (DAFC) File 3-20
3.2.3.6.7 Saving the QDF or GDS in the Data Interface Format (DIE) 3-22
3.2.3.7 Saving Data Fields.....................3-22
3.2.3.8 Interrupt Statements....................3-23
3.2.3.9 Comments 3-26
3.2.3.10 Executing Other TSS Commands.................3-26
3.2.3.11 Clearing Data Structures...................3-27
3.2.3.12 Executing a User Program...................3-27
3.2.3.13 Terminating the GIPSY Session 3-27
3.2.3.14 GIPSY Color Processing....................3-27
3.2.3.15 User Defined Subroutines..................3-28
3.2.3.16 JDAC Command........................3-28
3.2.4 User Data Input 3-28
3.2.4.1 The Data File 3-29
3.2.4.2 The Index File.......................3-29
3.2.5 Describing the Data Records 3-30
3.2.5.1 Describing an I-D-S/II Integrated File. 3-30
3.2.5.2 Describing Data File Records to GIPSY 3-30
3.2.5.3 Describing the Index File 3-36
3.2.5.4 Describing GLOBAL and QUALIFY Records 3-37
3.2.6 Conditional Expressions 3-37
3.2.7 Predefining Conditional Expressions 3-41
3.2.8 Date Retrieval 3-43
3.2.9 Arithmetic Expressions....................3-4-
3.2.10 Predefining Arithmetic Expressions...............3-45
3.2.11 Data Modifications......................3-46
3.2.11.1 User Subroutine Data Modifications..............3-49
3.2.12. Defining and Executing a GIPSY Process.............3-49
3.2.13. Executing GIPSY in the Batch Environment. 3-54
3.2.13.1. GIPSY Batch JCL 3-54
3.2.13.2. GIPSY Batch Limitations 3-55
3.2.14. Parameterized Input 3-56
3.3 Statistical Reports 3-56
3.3.1 Building Statistical Reports..................3-59
3.3.1.1 Row and Column Definitions..................3-59
3.3.1.1.1 USE Process. 3-60
3.3.1.1.2 SELECT Process......................3-62
3.3.1.1.3 RANGE Process. 3-63
3.3.1.1.4 EXPLICIT Process.....................3-64
3.3.1.1.5 Specifying Calculated Data Values3-65
3.3.1.2 Category and Section Definitions...............3-66
3.3.1.3 Defining Multiple Reports 3-66
3.3.2 Displaying Statistical Reports. 3-67
3.3.2.1 Tabular Report. 3-69
3.3.2.2 Bar Graphs 3-81
3.3.2.3 Histograms 3-91

ivI

* Section Page

3.3.2.4 Point and Line Graphs 3-91

3.3.2.5 The Curve Graph 3-99

3.3.2.6 The Step Graph 3-103

3.3.2.7 Gantt Chart 3-107

3.3.2.8 Pie Charts 3-111

3.3.3 Modifying Statistical Reports 3-116

3.3.3.1 Matrix Modification 3-116

3.3.3.1.1 Limiting Rows, Columns, Sections and Categories 3-116

3.3.3.1.2 Report Totals 3-120

3.3.3.1.3 Vector Sequencing 3-122

3.3.3.1.4 Accumulating Vector Values 3-122

3.3.3.1.5 Limiting Number of Decimal Places 3-123

3.3.3.2 Establishing Default Graph Parameters 3-123

3.3.3.2.1 Fill Specifications 3-124

3.3.3.2.2 Shading Specifications 3-124

3.3.3.2.3 Proportion Specifications 3-125

3.3.3.3 Preserving User Supplied Defaults 3-125

3.3.3.3.1 Control of Fill vs. Shading 3-125

3.3.3.3.2 Control of Axis Parameters 3-126

3.3.3.3.3 Establishing Axis Parameters 3-126

3.3.3.3.4 Adding Tic Marks 3-127

3.3.3.3.5 Adding Grid Lines 3-127

3.3.3.3.6 Preserving Axis Parameters 3-130
3.3.4 E'hancing Statistical Reports 3-132

3.3.4.1 Adding Symbol 3-132

3.3.4.2 Adding Textual Information 3-133

3.3.4.3 Graph Refresh Capability 3-135
3.3.4.4 Turning the Graph Off 3-135

3.3.5 Saving Statistical Reports 3-141

3.3.6 Accessing Saved Reports 3-141

3.3.7 Building a New Report 3-141

3.3.7.1 ASSIGN Function 3-143

3.3.7.2 DELETE Function 3-146

3.3.7.3 RENAME Function 3-147

3.3.7.4 SUBSET Function 3-148

3.3.7.5 CHANGE Function 3-149

3.3.7.6 DEFINE Function 3-153

3.3.7.7 ADD Function 3-154

3.3.7.8 INPUT Function 3-154

3.3.7.9 REVIEW Statement 3-157

3.4 Geographic Displays 3-157

3.4.1 Geographic Display Definition Statements 3-158

3.4.1.1 Map Definition 3-158

3.4.1.1.1 The FILE Clause 3-160

3.4.1.1.2 The WITH Clause 3-160

3.4.1.1.3 The WINDOW Clause 3-166

3.4.1.1.4 The COLOR Clause 3-168

1'Flit. PR TE 'C -

*Section Page

3.4.1.2 Area Names.......... 3-168
3.4.1.3 Location Names 3-171
3.4.1.4 Geographic Display Control 3-171
3.4.1.5 Geographic Grids 3-173
3.4.2 Data Base Geographic Displays. 3-174
3.4.2.1 Symbol Plots........................3-174
3.4.2.1.1 User-Defined Graphic Characters. 3-179
?.4.2.2 Building a Track Plot. 3-184
3.4.2.3 Synthesizing the Geographic Data 3-188
3.4.3 Maps and Data Displays 3-188
3.4.3.1 Viewing the Display. 3-190
3.4.3.2 Interactive Display Building and Modification 3-190
3.4.3.2.1 Adding Tracks 3-190
3.4.3.2.2 Adding Symbols 3-193
3.4.3.2.3 Adding Circles 3-193
3.4.3.2.4 Adding Geodetic Information. 3-194
3.4.3.2.5 Changing the Viewed Area 3-195
3.4.3.2.6 Limiting the Data Displayed. 3-197
3.4.3.2.7 Listing the Display Data 3-198
3.4.3.2.8 Adding Textual Information 3-198
3.4.4 Secondary Data Retrieval 3-199
3.5 GIPSY Language Mode Transition 3-200
3.6 Picture Processing 3-200
3.6.1 Saving Pictures 3-200
3.6.2 Recalling Pictures......................3-201

4. QUERY PROCEDURES...........................4-1
4.1 File Query............................4-1
4.1.1 Data Retrieval.........................4-1
4.1.2 Browsing............................4-1
4.1.3 Subsetting the Database. 4-3
4.1.4 Printing to a File 4-3
4.2 Data Sorting...........................4-4
4.3 Data Modifications........................4-4
4.3.1 Field Level Data Modification. 4-5
4.3.2 Record Level Data Modification 4-9

5. USER TERMINAL PROCESSING PROCEDURES.................5-1
5.1. 'VTS/CUC Early Product Workstation and Z-248 PC/AT GIPSYmate

interface 5-1
5.2 MAGIC/GIPSY Interface 5-1

6. GIPSY's GENERALIZED DATA REPORTS 6-1
6.1 Initiating the Generalized Data Reports Module 6-1
6.2 Data Manipulation 6-1
6.2.1 Field Manipulation 6-1
6.2.1.1 Add Type...........................6-2
6.2.1.2 Command to Add Field Definition. 6-2

vi CI- 1

* Sect ion Page

6.2.2.1 Database Sort 6-2
6.2.2.1.1 SORT Command........................6-2
6.2.2.1.2 RESORT Command.......................6-3
6.2.2.2 Data Record Qualification. 6-3
6.2.3 QDF Manipulation........................6-3
6.3 Report Building 6-4
6.3.1 Report Definition 6-4
6.3.1.1 Parts Definition.......................6-4
6.3.1.1.1 Header Table........................6-4
6.3.1.1 2 Body Table.........................6-4
6.3.1.1.3 Trailer Table........................6-10
6.3.1.1.4 Output Element Statements. 6-10
6.3.1.1.4.1 The LINE Statemenz 6-10
6.3.1.1.4.2 The SPACE Statement. 6-19
6.3.1.1.4.3 The EJECT Statement...................6-20
6.3.1.1.5 The Output Table Subroutines...............6-21
6.3.1.1.5.1 $BODY-LINE........................6-21
6.3.1.1.5.2 $BODY-PART........................6-21
6.3.1.1.5.3 $LINES-LEFT 6-22
6.3.1.1.5.4 $PAGE-NUMBF.......................6-22
6.3.1.1.5.5 $PRINT-DATE. 6-22
6.3.1.1.5.6 SPRINT-TIME. 6-23
6.3.1.1.5.7 $TOTAL-PAGES.......................6-23
6.3.1.2 Group Definition 6-23
6.3.2 Report Preparation 6-23
6.4 Report Viewing..........................6-24
6.4.1 Interactive Book Review. 6-24
6.4.2 Non-Interactive Book Review 6-25
6.4.3 Book Review Display Commands 6-30
6.5 Directing Book Output to Printer................6-37

vii CH -1

APPENDIXES.A. GIPSY EXECUTION SEQUENCE........ A-2
B. SYSTEM SUPPLIED SUBROUTINES B-i
C. FIELD TABLES...........................C-i
D. BUILD NEW REPORT EXAMPLE.. D-i
E. AREA NAMES............................E-i
F. LOCATION NAMES. F-i
G. WIS WORKSTATION (WWS) GIPSY TERMINAL OPERATIONS.-i
H. INDEX H-i

DISTRIBUTION...........................I-1

STANDARD FORM 298 J-1

ILLUSTRATIONS

Figure Page

1-1 List of AMrfieid Information.....................-3
1-2 Ceographic Dispiay of Airfieid Information- 4
2-i GIPSY Configuration at JDSSC...................2-4
2-2 System Organization 2-8
2-3 Error Co--rection Sequence. 2-10
2-4 Si-ructurai Orgaiiization of GIPSY Language- ii.2-5 Tabuiar Report 2-13
2-6 Bar Graph. 2-14
2-7 Histogram. 2-15
2 8 Point Graph. 2-16
2-9 Line Graph With Single Line 2-17
2-10 Line Graph With Multipie Lines.................2-18
2-li Pie Chart. 2-19
2-12 BNR Report Modification. 2-20
2-13 Modified Report. 2-21
2-14 Last Page of Modified Report..................2-22
2-15 GTPSY World Map With Grid Lines 2-24
2-16 Synbol Plot. 2-25
2-17 Tr.ack/Symbol Plot. 2-26
2-18 Zoo,n in on Track and Symbol Plot................2-27
2-19 Result of Zoom 2-28
2-20 Window for Geographic List 2-29
2-21 Geographic List. 2-30
2-22 17ampie Printed Report. 2-31
2-23 -mpie Formatted Report. 2-32
3-1 VIP 7705 and Tektronix 4014 Log-on Procedures. 3-2
3-zSample rf PCS Statement. 3-13

3-3 Index/File Relationship. 3-31
3-4 Graph of y-2x+ 3-58
3-5 Example of BREAK Command 3-68

viii

Figure Page

3-6 GIPSY Page Numbering 3-70
3-7 Bar Graph Using Specific Column 3-83
3-8 Bar Graph Using Specific Row..................3-84
3-9 User Shading on Group Bar Graph 3-87
3-10 Stacked Bar Graph With Shading Densities...............3-89
3-11 Stacking and Using Bar Graphs 3-90
3-12 Paged Bar Graph. 3-92
3-13 Sample Histogram 3-96
3-14 Line Graph With Using Phrase 3-100
3-15 Tabular Report for Curve Examples. 3-102
3-16 Sample Curve Display........................3-104
3-17 Sample Step Graph 3-105
3-18 Step Graph Data 3-108
3-19 Step Graph With SHOW Option. 3-109
3-20 Basic Gantt Chart 3-112
3-21 Sample Pie Chart........................3-114
3-22 Pie Chart With USING and FOR Headers 3-115
3-23 Pie Chart With LABEL Options 3-117
3-24 Appended Totals 3-121
3-25 Result of SCALE Command 3-128
3-26 Result of TIC Command 3-129
3-27 Result of GRID Command.....................3-131
3-28 Initial Graphic Display 3-136
3-29 Positioning TXT1 With Graphic Cursor 3-137S3-30 Graph With TXT1 3-138
3-31 Positioning TXT2 With Graphic Cursor 3-139
3-32 Refreshed Graph With TXT1 and TXT2 3-140
3-33 Tabular Report Input to Subset 3-150
3-34 New Report After Subset 3-151
3-35 USA Map File............................3-161
3-36 Software Zoom on Great Lakes Area From USA Map File 3-162
3-37 Software Zoom on Chesapeake Bay. 3-163
3-38 Software Zoom on Virginia and Maryland From WORLD2 Map

File...........................3-169
3-39 Geographic Circles.......................3-178
3-40 Standard System Plot........................3-180
3-41 Track With Distance Option 3-187
3-42 Protected Symbol and Track Plot on WORLD2 Map File 3-189
3-43 Keyboard Supplied Tracks, Circle, and Symbol 3-192
6-1 Sample PCS for BOOK Named BKAIRFIELD 6-5
6-2 Display of GROUP Named INDEX....................6-26
6-3 Display of GROUP Named RUNWAY 6-31
C-1 PCS With GIPSY Subroutines C-28
C-2 Output From BOOK-PLACE, PART-WINDOW C-30
C-3 Output From BOOK-PLACE, PART-LOCATION C-31
G-1 GIPSY Undefined Terminal Prompt.- 5

S ix

Numnber TALSPage

3-1 WORLD2 Political and Topographic Map Details 3-164

x

ABSTRACT

SThe Graphic Information Presentation System (GIPSY) is a general purpose
graphics and information display capability. It combines the tools of data
retrieval, information processing, formatted reports, tabular, graphic, and

geographic display into a single integrated on-line interactive system. It is a
file and data independent system that is driven by a high level user oriented
language. The graphic display capabilities were implemented using a device

independent approach which allows the single integrated system to support
multiple dissimilar devices. GIPSY aucomatically reconfigures itself to the
capabilities and unique requirements of the terminal to which the user is logged

onto.

The graphic display capabilities were the primary basis for the initiation of
this system. However, GIPSY very effectively serves as an information handling
system to connect the user's data base to a large set of oniline interactive
query and display capabilities.

This document provides mid-level tutorial description of the capabilities of
GIPSY.-, GIPSY is the WWMCCS Standard Operating System software for computer

graphics, as approved by System Development Notification (SDN) K7804. This
document corresponds to GIPSY Release 5.2 which operates with Honeywell's
General Comprehensive Operating System (GCOS) 8.

This manual supersedes Computer System Manual (CSM) Users Manual (UM) 259-85
dated 15 August 1985.

xi

SECTION 1. GENERAL

1.1 Purpose of the Users Manual

The objective of this Users Manual is to provide non-ADP personnel with the
information necessary to effectively use the Graphic Information Presentation
System (GIPSY). This includes familiarizing the reader with the concepts
behind interactive on-line computer graphics. Advanced concepts involving
interface programs in the use of GIPSY are not discussed in this manual.

This Users Manual is organized such that each GIPSY user is required to learn
only that part of GIPSY that is related to his/her applications. Section I
defines the project and provides background information necessary for
understanding this document. Section 2 provides an overview of the system.
Section 3 describes the language used by GIPSY and its associated outputs.
These three sections should be read by each GIPSY user. Sections 4 and 5 are
aimed toward the applications programmer who wants to use GIPSY in conjunction
with existing information and query systems. Section 6 focuses in on the
specifics of interfacing with the WWMCCS Information System (WIS) Early
Products Workstation and the Zenith 248 PC/AT. Section 7 explains GIPSY's
Generalized Data Reports module.

1.1.1 Project Orientation

GIPSY is an outgrowth of the effort to satisfy the graphic needs of the
National Military Command System (NMCS). Capability requirements were
extracted from Technical Support Requirement (TSR) documents, requirement
studies, and related documents identified under subsection 1.2. Although
GIPSY was originally oriented toward the NMCS user, it is equally applicable
to other WWMCCS sites. An overriding concern of this project was to produce
an information presentation and graphic capability that is independent of any
particular application, yet able to effectively interface with that
application as it currently exists.

1.1.1.1 Introduction to Graphics. It has been said that a picture is worth a
thousand words. Few people would argue with that statement. We have only to
look at our newspapers, magazines, and TV sets to appreciate the importance of
pictorial presentations of information. A photograph records information as
it exists in a given instant in time; unfortunately, storage, recall, and
update of that information is nearly impossible using photographic methods.
To solve this problem we strip the important pieces of information from
reality and simulations. Then we store the information in digital form in
computer memory. Now the problem of storage, recall, and update is solved,
but we have a presentation problem. Presenting the information in a printed
or textual form solves part of the problem but by no means all of it.
Valuable concepts and interrelationships are lost or are not detected because
the information is presented as a list of data rather than a concise image of
tne relevant set of data.

Compare a printout of geographic coordinates and unit identification

* -1

(figure 1-i) with a map having each unit clearly plotted at its respective
location (figure 1-2). The contrast is striking indeed; but it clearly
relates the graphic presentation method to the normal printed report method.
We could go on discussing the merits cf graphic presentation over textual
methods; however, there are a number of document , (see subsection 1.2) which
more eloquently address this subject than we can within the scope of this
document. We invite you to make comparisons of textual methods and the
graphics produced in the illustrations in this manual.

1.1.1.2 Purpose of Project. The primary purpose of GIPSY is to provide a
basic, user analyst-oriented, graphics capability for displaying data
extracted from a variety of data sources in both graphic and alphanumeric
form. A secondary purpose is to establish a frame of reference upon which a
comprehensive graphics capability can be built based upon requirements defined
and refined by the user community after exposure to the capabilities. The
basic set of capabilities from known or documented WWMCCS and NMCS
requirements was used as a baseline capability. The framework is established
by which requirements not already addressed can be addressed in future
releases of CIPSY.

1.1.1.3 Scope of Project. The scope of GIPSY is limited to the purposes
defined above. GIPSY is not a vehicle for pure computer graphics. It is not
a product for editing and creating slides from sketches or drawings. More
properly, GIPSY is a data-based system application of computer graphics. The
primary thrust of on-line, interactive computer graphics, (or simply graphics,
for short) within the command and control community is the presentation of
data in the form of tabular information summaries, management graphs,
statistical graphs, and geographic displays. GIPSY provides a set of
operational tools that allow the applications analyst to build a user-friendly
interface between the staff-level user and his/her data system. This
methodology effectively allows the application of GIPSY to be tailored to a
specific set of information or user analyst.

1.1.1.4 Audience. GIPSY is targeted at the audience of users at least one
step removed from the programmer. GIPSY is primarily oriented toward the
decision maker who knows his/her data but not the intricacies of data
processing. Unlike most graphic systems, GIPSY is not a subroutine library
with which the user writes "simple programs" to generate graphics. There is
not a long list of reserved words or codes the user has to memorize. In fact,
there are no reserved words. GIPSY commands are English-like sentences whose
words assume meanings dependent upon the context in which they are used. The
GIPSY user does not have to learn the entire GIPSY language, only that subset
defining his/her functions.

1.1.1.5 Essential Considerations. The user feedback mechanism is an
extremely important feature in the development and maintenance of GIPSY. It
is the vehicle for influencing the development process. The GIPSY management
staff does not presume to anticipate all users' requirements or to dictate
what the users must accept. The modular construction of GIPSY makes it easy
to adapt the system to unique applications while maintaining compatibility

1-2

CL I= 00 0 0 C
S000000

LAJ W

j .. W -J w J J

LL

> > .. jz~a
Ix cr w 41C

0

> V
14

-n M]_

0 Ln A -4-4-4

~ 4. m N CUQ '4.V

0 w 0)r-L

-- 4

.- 4

4A 44

o LL

W i

L1 Ci W -
z o 0I-

.jZ i

ia. (J 0 0"

* 1-3

--

(A 4

cc I- I

a L& La

00

9-444

a- tO

O1-4 -

with subsequent releases of the system containing more powerful capabilities.

1.2 Project References

a. Terra Plot System (TPLOT)

Computer System Manual

CSM UM 161-82, 30 July 1982

b. Data Presentation System (DPS)
Computer System Manual
Number CSM UM 39B-68, 20 August 1971

c. Technical Report Number TR 116-77, Interactive Computer

Graphics, Paul R. Davis, Major, USAF, and John R. Scott,
Captain, USA, 20 June 1977

d. J3M-461-77, WWMCCS Graphics Requirements, 24 February 1977

e. NMCS TSR, Technical Support Requirements for FY 79-83
Common and Indirect Support, Joint Chiefs of Staff

21 February 1977.

f. SDN K7613, CCTC Prototype Graphics System, 5 May 1976

g. SDN (NO. 7770612) Tektronix Graphic Terminal and Copier for SAGA, 26
April 1976

h. SDNs K7515, K7516, NMCS Information and Display System, 19 June 1975

i. CCTC Memo, CCTC Graphics Review, 15 April 1977

J. DCA Contract No. PR C421-76-37, Research, "Toward Effective Resource
Sharing: Networking Research in Front Ending and Intelligent

Terminal," 17 September 1976

k. W. T. Gorse and S. S. Poh, "Final Report on Requirements
Analysis for WWMCCS Displays and Source Data Automation,"

MITRE Corp., MTR-7324, DCA/WAD F19628-76-C-0001, August 1976

1. T. L. Elliott and S. S. Poh, "Graphics Development Plan for WWMCCS,"
MITRE Corp., MTR-5273, DCA/WAD F19628-76-C-0001, September 1976

m. CCTC TM 146-77, CCTC ADP Management Plan, Volume II, 1 March 1977

n. NMCSSC Memo, Graphics Requirements for NMCSSC, I October 1975

o. BIS7705-TM Emulator Manual, Version 4.0 Micro-Integration, Inc.,
ML-1500-02-PI, 1986.

1-5

1.3 Terms and Abbreviations

Abscissa - The set of x data values of a graph. Generally the vector (row or
column) headers are used as the abscissa; the abscissa cannot be specified in
GIPSY except on the curve description. If the ordinate is a row vector the
abscissa will be the column headers. The converse is also true.

ASCII - American Standard Code for Information Interchange. This is the

4-characters per word TSS operational mode.

Baud - Information transfer rate normally meaning bits transferred per second.

BCD - Binary Coded Decimal. This is the 6-bits per character code that is
normal to DPS-8/DPS 8000 batch mode operation.

Cat/File String - The string of characters that is used to uniquely identify a
data file on the DPS-8/DPS 8000. The cat/file string is sometimes referred to
as catalog file descriptor (CFD).

Catalog File Descriptor - See Cat/File String.

COMM - Abbreviation for communication; See line mode.

Communications Mode - See line mode.

CRT - Cathode Ray Tube. This term is used to refer to a nunprinting (or
hardcopy) display terminal.

DAFC - The Directive Action and File Control (DAFC) file is a GIPSY generated
temporary file which contains the status of all GIPSY parameters and user
input specifications. The DAFC is the central file in the system. All
intermodule communication occurs through the DAFC; The GIPSY command word
which declares the intent to specify that a previously saved DAFC file is to
be restored with execution resuming at the point in which the DAFC was saved.

DISA - Defense Information Systems Agency, formerly Defense Communications
Agency (DCA).

DSSO - Defense Systems Support Organization, formerly Joint Data Systems
Support Center (JDSSC).

Element - A number in the body of the tabular report (matrix).

FDT - A File Descriptor Table enables the user to describe his data file to
GIPSY. The FDT may be specified in-line or recalled from a previously saved
file.

FST - The File Structure Table that is created by the GET IDSII STRUCTURE. It

displays the record type identifiers and the relationships among the different
record types of an I-D-3/II integrated file only.

1-6 CH-I

GCOS - General Comprehensive Operating System. The WWMCCS operating system* for the DPS-8/DPS 8000.

GDS - Graphic Data Set (GDS) is a file containing core image representation
of one or more tabular reports. The GDS is normally created by the
matrix generation module using the QDF as input; The GIPSY command word used
to declare an alternate file for the GD3 as defined above.

1-6.1 CH-1

THIS PAGE INTENTIONALLY LEFT BLANK

1-6.2 CH- O

GFRC - General File and Record Control. One of the types of file syst=ms used

on the DPS-8/DPS 8000.

H6000 - The generic name for the family of 6000 series computers produced by
Honeywell Information Systems, Inc. It is now referred to as DPS-8/DPS 8000.

I-D-S/II - Integrated Data Store/Il. May be either an indexed or integrated
file format on the DPS-8/DPS 8000.

Indexed File - A UFAS indexed file format uses key fields that are defined
during the creation of the data file to expedite data retrieval.

Integrated File - An I-D-S/II integrated file format may consist of many
different record types organized in a hierarchy that consists of one or more
owner record types that may have subordinate record types, which may in turn

have subordinate record types.

Interactive - Having the property of immediately responding to inputs in a
conversational manner. A process is said to be interactive only if each
complete information unit supplied is responded to and acted upon prior to
proceeding to the next step. The interactions have the ability to dynamically
alter the course of the conversation and objective thereof.

Interrupt - An action which gets the immediate attention of current program
process. Normally a different course of action is effected.

ISP - Indexed Sequential Processor. A GFRC file organization that allows
access to records in both sequential order and random access through the use
of a unique key value.

JDSSC - Joint Data Systems Support Center. Now referred to as Defense Systems
Support Organization (DSSO).

Line Mode - A setting on a terminal in which the terminal is able to send data
to and receive data from the computer. This is usually set by a contact
switch or toggle switch on the terminal labeled "line" or "COMM".

Logic Table - The Logic Table is a passive tool in GIPSY which allows the
user to assign any number of conditional expression to a character name of 1

to 12 characters; Names defined in the logic table may be used in lieu of a

conditional expression in any statement which allows for a conditional
expression, including the logic table itself.

Null File - A named area for which space has been allocated, but which
contains no information, not even an end of file.

Math Table - The Math Table does for arithmetic expression what the logic
table does for conditional expressions.

1 i-7 CH-1

Mode - The mode is the name assigned to the dimensions of a tabular report.

The four modes are COLUMN, ROW, CATEGORY and SECTION.

On-line Having direct and immediate connection to the computer.

Ordinate - The set of y data values of a graph. In all GIPSY graphs the

vector defining ordinates must be explicitly stated.

Ordinate Descriptor - The vector header that defines the vect 9: containing y

values.

Partial Field Notation - A technique for selecting a part of a nreviously

defined field. It is a pair of numbers specified in parenthesis following a

field name; the first number identifies the first character position within

1-7.1 CH-l

THIS PAGE INTENTIONALLY LEFT BLANK

0 1-7.2 CH-1

the field of data to be used and the second number identifies the character

position within the field of the last character to be used.

PCS - The Process Control Statement (PCS) is a user file designated as

containing GIPSY source language statements; The GIPSY command word which

declares the intent to specify a catalog-file string of a file containing

GIPSY source language statements.

Permanent File - A cataloged data set whose name and location are known by the

system and may be accessed by referencing that name.

Prompt Character - A character that is displayed to indicate the on-line

interactive input devices is ready to accept input. In GIPSY the character is

a ">", and in TSS it is "*".

Protocol - The mechanism through which one computer or device communicates
with another. This is information transfer above and beyond that which is

displayed on the screen.

ODF - The Qualified Data File (QDF) is a data file which contains the minimum
subset of the user's data file needed to produce the required statistical or

graphical display (see appendix E for full discussion); The GIPSY Command
Word which declares the intent to specify on alternate file fcr the QDF

defined above.

ODT - The Qualified Descriptor Table (QDT) is an internal GIPSY data structure
which describes the QDF.

Random File Access - A method of file access that involves the retrieval of a

specific file record by referring to a unique record identifier.

Relative - A (UFAS) file format that has a unique number associated with each
record that can be used to identify a specific record to be retrieved.

Sequential File Access - A method of file access that involves the retrieval

of data records from a file in the logical order in which they are stored in

that file.

Tabular Report - An organization of data into rows and columns with a numeric
value at the intersection of each row and column. The tabular report also

contains classification and title information.

Temporary File - A data set which exists only during the duration of a
terminal session.

- Time Sharing System. This is the Standard DPS-8/DPS 8000 System for

on-line interactive processing.

-Unified File Access System. A DPS-8/DPS 8000 file management system.

1-8 CH -1

Vector - A group of elements comprising a single ROW or COLUMN.

Vector Header - The name associated with a single COLUMN, ROW, CATEGORY or
SECTION. Usually referred to with the modes (e.g., ROW, Headers, SECTION
Headers).

WWMCCS Worldwide Military Command and Control System.

WWDMS Worldwide Military Command and Control System Data Management System.

i-8.i CH-I

THIS PAGE INTENTIONALLY LEFTr BLANK

1-8.2 CHI-1

1.4 Security and Privacy

GIPSY has no classified data files and thus has no special provision for file
security and privacy. Marking of outputs produced by GIPSY is controlled by
commands provided by GIPSY. The standard security caveat features cannot
apply to graphics since they are based upon counting line feed characters.
Further details are provided in the discussion of the GIPSY Classification
Statement, subsection 3.2.3.

GIPSY does create temporary files which contain fragments of user data, and it
can create permanent files in user file space when so requested. This should
be considered when choosing your logon classification since GIPSY uses the
standard Time Sharing System (TSS) facilities for file creation and access.

1-9

THIS PAGE INTENTIONALLY LEFT BLANK

1-10

SECTION 2. SYSTEM SUMMARY

This section describes the application, operation, configuration,
organization, performance, inputs and outputs of GIPSY.

2.1 System Overview

The Graphic Information Presentation System (GIPSY) is designed for WWMCCS
users with a need for timely displays of simple or complex information in the

form of tabular reports, graphs, and geographic displays. GIPSY's

problem-solving capabilities provide for on-line, interactive terminal use on
the Honeywell Information System (HIS) 6080 computer systzm. ig-i ,lights Cf

GIPSY include the following:

a. Language Simplicity - GIPSY's user language has an English-like
vocabulary and grammar. Processing is controlled by powerful context

sensitive language statements such as -- RETRIEVE a set of data --

BUILD a tabular report -- or ZOOM to a larger or smaller map scale.

b. Data Retrieval - Statements are provided to selectively retrieve a

logical subset of the user's data file for synthesis into a tabular,
graphic or geographic display. A secondary retrieval allows

retrieval from the retrieval data.

c. File Independence - The layout of the data in the user's data record

is described to GIPSY once in a file descriptor table in which each

field is assigned a name. From that point onward, the user
references his/her data by the names assigned to the data fields.

d. Tabular Displays - GIPSY produces reports in the form of rows and
columns of numerical information, complete with row and column
headings, titles, security classification, and page numbers. The

user can determine the numerical information to be included in the
columns of the table in a number of ways. The user may ,hoose to

simply cross-tabulate two or more data fie', ., or to build a complex

report whose entries are conditionally calculated values.

e. Data Browsing - The secondary retrieval combined with GIPSY's
alphanumeric display capability provides an effective tool for

browsing through selected portions of the data retrieved.

f. Report Modifications - The tabular report is structured as a matrix
which can be transformed in either row or column mode or in both

modes using arithmetic operations (+, *, /, -) and predefined
functions. Vectors (rows or columns) can be added, deleted, or

modified. Individual values may be changed.

g. File Subsetting - A subsetting capability is provided to allow the
user to select and save a subset of his data base after applying

retrieval and data modification procedures.

* 2-1

h. Geographic Maps - A map of any portion of the world (currently using
Mercator and Lambert projections) can be displayed and automatically
scaled to fit the display area. Location and track plots can be
superimposed on these projections.

i. Geographic Location Plot - GIPSY will plot a symbol at the location
designated by the contents of a coordinate field extracted from data
records. This is very effective for displaying the current location
of a unit and distinguishing each unit by different symbols based on
data content or selection criteria.

j. Geographic Track Plot - Given a coordiiate field and a track
identifier, GIPSY will draw a geographic track by connecting the
points in a tracking sequence.

k. Geographic Display Function - Geographic display functions, such as
zooming and listing contents of data points on the display, add to
the flexibility of GIPSY's powerful geographic capabilities.

1. Device Independence - Device characteriscics that are unique are
isolated from GIPSY and are resolved at execution time. This
capability maximizes the independence of GIPSY from any particular
vendor's device. GIPSY can be used at any H6000 site using the
standard TSS. Installation is simple, and ease of maintenance is
assured by GIPSY's modular construction.

m. In-line Data Modification - Data in operational data bases often
requires supplemental data or restructuring of existing data in order
to maximize the utility of the data and its presentation. GIPSY
provides tools to dynamically restructure the data after it is read
from the user's data file but prior to any GIPSY processing of that
data. Consequently, discovered data error can be corrected,
supplemental data added, etc.

n. Save and Restore Execution - At any time during the execution of
GIPSY the user may "freeze" the GIPSY execution and save it on a file
for a subsequent restoration of the process at the point it was
interrupted.

o. Display Save/Recall - Completed graphic displays may be saved and
subsequently recalled and redisplayed. Graphic display may even be
created and saved in the batch mode and recalled as pictures in an
on-line mode.

p. Clear Text Messages - GIPSY never provides the user with coded
messages or error numbers. All messages are presented in concise
English sentences. Messages are available not only in event of an
error in a GIPSY input statement but the system contains supporting
messages which are always available to let the user know what input
options are available.

2-2

2.2 System Operation

GIPSY operates in an interactive, time-sharing mode. It accepts input,
processing, and output specifications in the form of language statements
entered via a terminal keyboard, from a previously saved file, or from a
combination of both. The internal operations of the system do not require the
user to enter job control statements or to be otherwise directly involved in
processing functions as is the case in batch, caid-oriented systems and
applications. Batch execution of GIPSY is available for applications
requiring large volumes of output.

From the perspective of the GIPSY user, system operation consists of keying in
language statements and responding to GIPSY messages. As each statement is
entered, it is immediately edited, and the user is notified if an error was
made. Errors are identified and explained and the user is instructed in the
recovery from the error condition.

GIPSY requires no special permissions, priority, privity, or special
consideration from the operation environment. In fact, GIPSY's operation is
sufficiently simple that it can be initiated and executed by a user's system
or FORTRAN program.

2.3 System Configuration

GIPSY operates on Honeywell 6000 series computers as a subsystem under the
Time-Sharing System (TSS). It executes within 12K to 32K words of TSS memory.
Each user of GIPSY gets a separate copy of the system, but by virtue of
operating in the TSS region of memory each user may be swapped out when either
that user is idle or a higher priority request comes in. Since an interactive
system is idle most of the time the cost of having each user get his own copy
of GIPSY is minimized. Disk storage requirements are minimal. No preassigned
output files are required since GIPSY acquires temporary file space for work
and data storage.

Although GIPSY was developed using a Tektronix 4014-1 graphic display unit,
the software was written with minimal dependence upon any particular terminal
hardware. The non-graphic output can be produced on any American Standard
Code for Information Interchange (ASCII) terminal. Once the device is
described to GIPSY (via a device definition table) output is automatically
formatted for that device. A device definition table exists for the Tektronix
4014, 4027, 4107, VIP 7705 and VIP 786, WIS Early Products Workstation
(WIS/CUC), Zenith 248 AT/PC, WIS Workstation (MAGIC), and Batch.

The WIS/CUC emulates a Tektronix 4014. Users should logon as they would for
any WIS/CUC-H6000 session and GIPSY will automatically switch the terminal to
4014 mode.

If a program-controllable hardcopy device is available, GIPSY can use it to
automatically produce hard copies from a Cathode Ray Tube (CRT) type device.
Figure 2-1 illustrates a configuration used in the JDSSC.

2-3 CH-1

[FigurLeS 2 GIPSY Cniuaina DS

11000 L MA2S4

Minimum configuration is an H6000 with sufficient memory to execute a 32K word

program, work and permanent file space, and alphanumeric input/output

terminal. Optimal configuration includes a graphic input/output terminal, and

a program-controlled hardcopy device. All functions of GIPSY except actual

graphic output may be produced on a minimal configuration.

2.4 System Organization

The H6000 Time-Sharing System is organized as a series of independently
executable object modules each of which may be executed by TSS or a subsystem

under TSS. GIPSY parallels TSS in its organizdtion in that major functions in

GIPSY are independently-executable object modules. Each module can be

automatically or explicitly executed by the GIPSY executive or by a

user-written executive routine.

The user communicates with GIPSY by means of an alphanumeric graphic terminal
for tabular, graphic, and geographic output. Any standard alphanumeric

terminal may be used to create graphic data structures if only tabular output
is desired. The user-input language is used to direct and control various

capabilities of the system through an interactive process by which the user

establishes the criteria for retrieval and organization of his data. From

these input language statements GIPSY creates fixed data structures (called

Process Control Tables) to control the various capabilities of the system.

2.5 System Performance

Once the data has been synthesized into a concise, graphic data structure, the
system begins building the display immediately, and it is ready in seconds--
depending on the speed of the graphics device and transmission speed. Input

language specification to GIPSY is interactive; if an error is made, the
system redisplays the input together with a pointer to the segment of the

statement in error. The user may simply type in a correction and the system

will take care of the rest. This provides a highly effective method of

specifying the graphic request including query and synthesis requirements.

Once graphic data structure is completed (i.e., the data is synthesized), the

entire set of graphic outputs is available without any further data file
processing.

2.6 Contingencies and Alternate Modes of Operation

Since GIPSY is a subsystem on the H6000, it has no alternate modes of
operations of its own.

2.7 Database/Data Bank

Other than map data bases, supporting information lists, and message library,

GIPSY has no data base of its own, and does not dictate data base formats for

use in GIPSY.

0 2-5

GIPSY processes the following file types:

a. General File and Record Control (GFRC) Sequential Files

b. GFRC Indexed Sequential Processing (ISP) Files

c. Unified File Access System (UFAS) Indexed Files
d Unified File Access System (UFAS) Relative Files

e Unified File Access System (UFAS) Sequential Files

f. Integrated Data Store/Il (I-D-S/II) Indexed Files

g. Integrated Data Store/I (I-D-S/II) Integrated Files.

GIPSY does not automatically handle interrelationships among different record
types. These interrelationships must be addressed by the user. GIPSY
processes all records against all applicable GIPSY statements. The data file
can be either batch-based Binary Coded Decimal (BCD) files or TSS-based ASCII
data files. If the data base is ASCII, GIPSY will correctly interpret it as
if it were BCD.

The data file is described to GIPSY via a structure called a File Descriptor
Table (FDT). The FDT describes each field the user desires to reference and
assigns a name to it. This name will be used to reference the defined data in
the file.

A File Structure Table (FST), which is stored and accessed with the FDT, is
created by GIPSY only for a UFAS I-D-S/II integrated file.

GIPSY is designed to allow you to use your data base as it currently exists.
You may find it convenient to add data elements to your data file to take
advantage of some of the more powerful automatic features of GIPSY.

2.8 General Description of Inputs. Processing, Outputs

This subsection of the Users Manual provides a semi-technical discussion of
the mechanics of GIPSY. It is not necessary to understand the subsetting of
files and information flow mechanics discussed here to utilize GIPSY
effectively. This subsection also contains a brief summary of the input
language and outputs of GIPSY.

2.8.1 Inout and Processing Operations. The approach to producing graphic
displays in GIPSY is to subdivide the tasks into individual units and then
solve two or three smaller, well-defined tasks rather than one complex one.
The steps involved are:

a. Prepare or identify the data

2-6 CH -1

*b. Describe the data file

c. Define the subset of the data to be selected for processing

d. Define the data syntheses process (report preparation instructions)

e. Display the data.

0

02-6.1 c-1

THIS PAGE INTENTIONALLY LEFT BLANK

2-6.2 CH -1

The first step involves identifying the data file to be used and becoming

familiar with its contents. Inevitably, the outputs you define initially will
be augmented by data displays not initially conceived, so it is important to

be familiar with the data. The data is identified to GIPSY with a FILE

statement which simply contains the catalog-file string of the desired data

file.

In the next step, LTe Cata file is de'scribed to GIPSY in what is called a File

Descriptor Table (FDT). Once thre FDT is built, it is referenced by name from
that po4 nt on. An FDT statement is used to tell GIPSY where the FDT is
locatc. After GIPSY is told where the FDT is, the user can proceed to the

subsesaent steps of data selection and data syntheses.

The cziteria for data selection ar3 established by a RETRIEVE statement which
ias -omparison operators (EQ, GT, GE, LT, LE, NE, BT, CHANGES, COMPLETE), a
una-y NOT operator, connectors (AND. OR), and parentheses (to control the

hierarchy of comparisons, if needed). All data records which meet the
retrieval criteria are saved in a temporary file called a Qualified Data File

(QDF). 'The QDF and its associateu Qualified Descriptor Table (QDT) are passed

to the data synthesizers.

The QDF is a much --aller subset of the user's data file. It contains only
data which is needed for subsequent use (i.e., it contains only referenced
fields of qualified records). This is important because in many cases a large

number of records will be needed but only a few fields. This technique
ensures that a minimal amount of data need be handled by the data synthesizer

and display modules. Further, it minimize3 the timtn the user's raster file is
tied up, since GIPSY will release its access to the data file after the QDF is

built. The user may srend an hour or so generating tabular, graphic, and
geographic displays, and analyzing the retrieved data; during this time the

user's data file is available for whatever functions need to be performed.

The QDF/QDT may be saved for subsequent GIPSY runs. This makes it possible to
bypass selection of data from the master file if the data and retrieval have

not changed.

Figure 2-2 puts the foregoing information into perspective. First log onto

the H6000 Time-Sharing System (TSS) using standard log-on procedures
(discussed under subsection 3.1); tell GIPSY's data selection and syntheses

language processor (the SYNTAX module) where to find your file and its

description. Then describe your tabular or graphic information collection
procedures. The GIPSY commands input to perfo a these functions are

translated and/or compiled and written to the Directivc Action and File

Control (DAFC) file to be acrissed by the remaining modules in order to

perform the requested functions.

The user's data file is attached and read by the Data SAection Module

(DATSEL) and a QDF is produced. The QDT has already been created by the

SYNTAX module by recording all data fields referenced in any statements. The

ODF is created by copying the fields, defined in the QDT, from the data file

* 2-7

G I PSY---

EXECUTIVE
MUDULE

i
SYNTAX

QDTLANGUAGE

F DT USER PROCESSOR

DATA

FILE DATSEL--

DATA ODF
SELECTION

tGDFWD

--- MTXGEN GEOMOD -----------

MATRIX --- OUTPUT
GEOGRAPHIC REPORTS

GENERATION DISPLAYS PROCESSOR

DISPLA MAP
-------- FILE

GOS GRAPHIC PICFIL USER
D I SPLAYS A-4,- *E300KF I LE

Figure 2-2. System Organization

2-8

to the QDF if the specified retrieval condition was met.. The QDF/QDT is then passed on to the data synthesis modules to be reduced to a
concise graphic form called the Graphic Data Set (GDS). The GDS is the
primary input to the Display Module (DISPLA). The QDF/QDT along with the map
files are the primary inputs to the Gpographic Display (GEOMOD) and the
Generalized Data Reports (GDRMOD) Modules. The map files also serve as input
in the Geographic Module.

In the current version of GIPSY, the GDS for the Geographic Display Module is
not as well developed as the GDS for statistical portions. The geographic
portion has a higher degree of dependence on the power of the graphic device;
consequently, the Geographic Display Module relies more heavily on the
QDF/QDT. The QDF/QDT are also the major input for the Generalized Data
Reports Module.

2.8.2 Language Overview. The GIPSY Language is English-like in context and
grammatical construction. The sentences begin with an imperative verb
defining an action to be taken, or a declarative defining a data file or a
mode of operation. There are no codes or reserved words; the meaning of each
word in the GIPSY language is sensitive to the context in which it appears.
Syntax validation is interactive. Each time you transmit a command to GIPSY
it is immediately checked for syntactic validity; if an error is detected, the
system will give an explanation as to the source of the error, print out the
statement in error, and display pointers to the element of the statement in
error. You may then simply retype the element in error; GIPSY will patch the
correction into your statement and restart syntax validation at that point.
The excerpt from an actual input and error sequence is shown in figure 2-3.
Note that the correction was only for the portion of the statement flagged as
incorrect.

GIPSY uses the symbol " > " as a prompt symbol to indicate that the keyboard
console is open for user input.

The GIPSY language is a tree-structured language. The first word is a command
word that identifies the branch of the tree; subsequent words further modify
the command with additional branches and perhaps with some options (leaves)
along the way. This definition of the language makes it natural, easy to
remember, easy to follow, and easy to enhance without impacting other
commands.

The GIPSY language falls into four categories: report descriptions syntax,
graph and report displays, geographic displays, and formatted reports. These
four categories also define the four modes of operation which are referred to
respectively as SYNTAX, DISPLAY, GEO, and GDR. GIPSY is normally initiated in
the SYNTAX mode. When the report is ready, you are placed in the DISPLAY,
GEO, or GDR mode depending upon the type of report requested. There are
commands to place you in either of these modes manually. Sections 3 and 6 of
this manual discuss the language elements of these modes in detail.
There is another feature that is not part of the language but is germane to

* 2-9

CLASS "VERY UNCLASSIFIED" (SIZE WRONG)

The indicated item is not a valid character size
valid sizes are JUMBO, LARGE, MEDIUM, SMALL. Enter either

the name or abbreviation for name (1st letter, etc).

CLASS "VERY UNCLASSIFIED" (SIZE WRONG)
A A

>JUMBO

>//LAST
CLASS "VERY UNCLASSIFIED" (SIZE JUMBO)

Figure 2-3. Error Correction Sequence

2-10

ilcING

ee-0

ON ~.-~ -c~ E~OR

CO~y NE
i

yI

Fiue24*tutrlOgniaino IS agae
2-1

understanding the language. At any point in the language specification, the
system knows what to expect as the next input. So, if you are ever uncertain
as to what GIPSY is expecting as input - do what comes naturally - hit the
carriage return key and GIPSY will tell you what it is expecting.

2.8.3 Outputs. This subsection defines and illustrates each of the basic
outputs from GIPSY. Bear in mind that any number of permutations of each
output may be possible.

a. Tabular Report (figure 2-5) - This is the basic structure from which
all the management graphs are produced. It is one of the elements
from the Graphic Data Set (GDS). Associated with each tabular report
are classification markings, title, row and column headers, and a
matrix of values built from the user's input data. Except where
noted, the x-axis data of the graphs are extracted from the row or
column headers and y-axis data are the values in one of the vectors
(row and column) of the matrix. All subsequently defined managinent
graphs were generated from the tabular report in figure 2-5.

b. Bar Graph (figure 2-6) - The bar graph produced by GIPSY may have a
single bar for each observation along the x-axis or there may be
several bars grouped side by side or, each stacked on top of the
other with shading and corresponding legend to distinguish each. The
system will pick a set of shadings to insure clearly distinguishable
and neat shadings. Of course, the user may override the system with
his/her own shading and density combinations.

c. Histogram (figure 2-7) - The difference between a bar graph and a
histogram lies primarily in the interpretation of the data shown on
them. The observation shown on the x-axis of the histogram
represents the midpoint of a set of values defined by the lateral
limits of the bar. Visually, the only difference is the absence of
space between the bars. Like the bar graph, the histogram may be
stacked and shaded.

d. Point Graph (figure 2-8) - At the y value of each observation on the
x-axis, a user-specified symbol is plotted.

e. Line Graph (figures 2-9 and 2-10) - The line graph is very simply a
point graph with the succeeding points connected.

f. Pie Chart (figure 2-11) - The pie chart shows the relationship of the
individual vector elements to the total. The percentages are
automatically calculated by GIPSY.

g. Report Transformation/Modification (figures 2-12, 2-13, and 2-14) -
Once a report has all the pieces of data collected into one place it
is often necessary to perform arithmetic operations on the rows
and/or columns of the old report to produce a new one. A "BUILD NEW
REPORT" command exists for this purpose.

2-12

U)

w 0

ai w

10- A- ;0 ;n

W : ,c V Zi"

LL. -

(x a

0 CL
E IV

zQ
I- c~aer~emu...(...'t.~4*flJ~..

I-

w sw
~ *~~WIYe000M'arr-...u0.

w ~-

;@'. . f 0

2-13

a fu (n

C LL. CU 0u

C Ii& CA O

4K & C

xu

4M Uw-e LA

Li0.

~CU

zZ;
-J-4

0

L

CL

IAo

(U (U -

Z~L0LaJ~OLa. L 0 ZA,

2-14

Lai

a L. ru M z

4r L

C LL

CI~ 0L

cW-In

QLLLS

La

LA

mob

L&A Im aA 0
AL.

2-15

c 3fue

if S

5 CW-w

ifla.

L&J - a1

0>
a. 1.

I 0

0 a cu au cw

4AOC.-W JL"Dbe

2f 16.-

0 frur),

c U. twcu

- L .

C W

C la q (
Li-

C LLIwo CO

:3:

cA Im0c
9-L CJ

w 0 CD

CC. 0 i

-40

-4)
M cua

0 Z LL Z U w -3 :>

2-17

4

--

0 0-

404

0 W

ui bZ

w£

- 9 40 0" 1

less-af

U2-1-

-l at

n CA W
N -~ W

(U - *nn a

99 en -
0 - N

W tC

ILA

'IA

0-4-a

-3--

zo b
wi -4C.
a

'air

ns

b~3e
-Im

0 a

au ID

CCU
C aC

2-19

+ +

0

+ +

4m.frLl =3 0r

-4

+ + CX C

0
LL

0 LAJI0 L
(~(VI 00 S-i

<D 0

(->4 I= 0J ~

(-I- a 0 <
$ 00 thI

LA- kn(.n i
Zn in

Wu Z
()k .. gD

0 1J rL CL a C

rZ 'Xw

202

z

....... WMC ._UNWMW m*...W~ 0OI -le te A - - LMW ' CLALA 0 -L

a OCOYr C A N C. CAN W 0 W (714 0 r" (1 ~ u
mONOM W~ W CC40rmw wun WeA

W=WLANCCLArlco Cla CLAC.en L..W

-CCV~~~n M C O mL CN W N
la-, 01 0:f~a~(~

vi N A AM MLC ML C. OCE

MN A MMCiC U Y ACXN~

LL ~L. 4)

in 3 Q4.
La j 4

W Z LL0 2 z
I.

W (n
W~fW

b1CV r zfl n w - C V 4 x W4 1.. J A- AC WM-fltA m~uU1f-

£ Y NWLNEUU(U~h~.W MCALA1'mmL

;o0mDW IA Ile ou .fu
IfV da

If2-21

:fu

0

tM

CL 4
w w

0 e

w w 0

bo

C UJ 04

0-4

IL

a.a

IL6

~ m.mn..w~*O'~4I4@,f oln
IM -0 MO MM *4 -'a n 'a ~ fO 'a-I. M

h. -(U O W M 4 'a @ a c 49a 4C C a(449 4-

2-2

h. Map (figure 2-15) - GIPSY currently has all international boundaries
and coastlines defined in a map file. The Mercator Cylindrical

Projection is currently used to display maps of any selected area of
the world, excluding the polar regions. This is automatically scaled

to the specified geographic window for maximum display area.

i. Grid - A geographic grid showing key parallels and meridians within
the geographic area can be superimposed on the geographic display.

The dotted lines in figure 2-15 represent the result of requesting a
grid. As the amount of geographic area changes, the grid lines are

automatically recalculated in order to provide a valid frame of
reference. Of course the user does have the option of specifying
individual grid lines.

j. Symbol Plot (figure 2-16) - Symbol representing units are plotted at
the locations specified by coordinates in the set of records

retrieved from the user's data file or selectively assigned by the

user. The symbol plot can be displayed on the map with or without a

track plot.

Track Plot (figure 2-17) - A track plot is a geographic display in
which successive data points are connected to define a path of a
unit's movement, reconnaissance flight path, ship movement, etc. Any

number of tracks can be generated and displayed on the map.

1. Zoom (figure 2-18) - One can zoom in on any portion of the geographic

display. The system automatically readjusts all parameters to insure
a good display. The area to be zoomed in on or out from can be

specified by graphic cursors rather than be predefined zooming

ratios. The position of the cursor is shown by the dashed lines; the

result of the zoom is shown in figure 2-19.

m. List (figures 2-20 and 2-21) - The graphic cursors can be used to

identify an area from which will be listed all data items (extracted

from the file) that fall within the area. The dashed lines in figure
2-20 show the window selected, and figure 2-21 shows all the data
points falling within the window.

n. Printed Reports (figure 2-22). GIPSY provides a very effective file
browsing capability which produces automatically semi-formatted

reports. The GIPSY language allows the user to interactively browse

through his/her data by specifying the conditions under which a
record is to be displayed and then to print all records meeting that

result. The qualifying data is immediately displayed.

o. Formatted Reports (figure 2-23). The Generalized Data Reports Module
(GDRMOD) provides flexible and comprehensive report generation and

gives the user complete control over the format of his/her reports.

2-23

w~C)

U-4

"0
w:

CL)

A.4

2-24

400

m .m

IL-

6-4 4

2-25

0
-4

-4

2-26

*.1.. ------- ----

0

W4

CL4

0- C14

2-2

I--

0

N

(~ 4

a-4

4A4

4, -4

2-28

0n0
OIL

IOUn
cc4

-~~ C. -

Li,..
;

.-.
Z:0

>. , -

cx f0
WC

ewe Dt

1 02 ril x O

040
M C-

~LfIV

2-2

CU S - E CU SnC (U- 4 - E

at P- w w
C. EL rL LxEE

LA x x x x x xx x
.- 0.- $.- II- P- *-- 3-1 so.

S. CL C .C 09. 0 0 : .1 a:cc 00 0 0 0 0 0 0 a

0- 0 0Q 0---0

LL.

TU

0, rucu n cu cu ni mU m C0 -4
CcSI I I

VE U wo a~ cn we ut vq w~
'5- c (x 0 cc(a r*- mj Sn W" (9 Sn v m9 Ln 04.) w Se n W" r- Snt C" c.. 0ob cc co am r. cc as ON

EX m z 0)

IA m 0 vn Yn Sn * EU
0(94 -4~ 'I S

EK U .4 M W9 Sn
mos m w w v~ m 0

I- e 0 W w cul V. Mn ('

40 .d We 0we0 0

I- EU 0 w . ci w* S E
~ 0 (0 (9 - .4.rq

(3 0 "4 S Y S 2 U3S

t-(LA-AUJf-

6~ 4 - 4 0-4 b- 8-

w ko r- r

(D v L r- mJ
z (7 - 0 C a

oD Z = =Z=Z

Ln' W) 4. CU

WflCU .'.4. CU lJ -
0

xxixxxxxx

S00000000 -

MOO~wrtUC%
0 V M W0 C1

m- w w r- w

cue~ZZZ

LL.

2-3

C1J~O-T

0 -4 -4

Li
C14

44
0

m 4

$4

L)4 cm 4-

U 0

0

0

C)
C14

- -4-

2-324

l U) G)~

-44

Li

0

Lin

-44

6. -4u

2-3

THIS PAGE INTENTIONALLY LEFT BLANK

02-34

SECTION 3. STAFF FUNCTIONS RELATED TO TECHNICAL OPERATIO"'S

The purpose of this section is :o provide a detailed description of how to use
GIPSY in an on-line interactive environment. This will be accomplished using

a combination of instructions, discussions, and examples. Those users who

have no need for statistical or management graphs may safely skip section 3.3.
Those users who have no geographic data or interest in geographical displays

may skip section 3.4.

3.1 Initiation Procedure

The in4 tiation procedure described here includes the entire standard TSS
log-on sequence. The user master catalog (UMC) shown in examples in this
document is the one defined at the JDSSC. The UMC is the first eight
characters of the catalog/file string ihich precedes the first slash (/) in
the catalog/file string. Each H6000 user must have a USERID and password in

order to perform any task on the computer. Your local site must provide these
for you. To access the H6000 the user must first ensure that the device is on
and that the computer is operational. You must now get the computer's

attention. The method of accomplishing this will vary from device to device
and site to site. These procedures should be documented by the site. This

process is not a function of GIPSY but of the H6000 log-on process. TypiLal
log-on sequences are shown in figure 3-1.

When the log-on process is complete, a system prompt "*" appears. GIPSY may
be initiated by responding "GIPSY". There are several statements which may be

included on the GIPSY command line. These statements will be discussed later.
When the command is received, GIPSY will respond with a ready message and
release number such as:

GIPSY Release 5.1 (30 APRIL 86) ***PRODUCTION SYSTEM***

When the symbol " > " appears, GIPSY is ready to accept your input request.
We call this symbol a prompt character. The prompt character indicates that

GI,SY is ready for keyboard input. If you transmit a null line (e.g.,
carriage return only), GIPSY will respond with a message telling you what it

is expecting as input. This is truz at any time except in error correction or

in answer to a specific question (in an error corrertion sequence, a null line
deletes the entire statement containing the error). When the display screen
contains a data display the audible alarm (bell) will sound to indicate that

GIPSY is ready for keyboard input.

3.2 GIPSY Language: Syntax and Semantics

Before getting into the composition rules, let us first define the terms
"syntax" and "semantics" and define our meta-language. When we use the word
"sjntax" we are referring to the grammatical or technical construction of a
statement. "Semantics" are the meanings associated with a word, phrase or

sentence.

* 3-1

$5, TSS

PLEASE LOG IN.

L -PER DJ8XI344XX -PIC XXXXXXXX -PJ DJ8XI344XX -SCC UZZ

0316000

PROGRAM NAME -TSS
PLEASE LOG IN.

L -PER DJ8XI344XX -PIC XXXXXXXX -PJ DJ8XI344XX -SCC UZZ

Figure 3-1. VIP 7705 and Tektronix 4014 Log-on Procedures

3-2 0

The symbols defined here are widely used and many are well known. However,
they are repeated here to eliminate the possibility of confusion.

Metasymbol Semantics

[] One item of information enclosed in brackets may be selected;

the information may be omitted entirely and system defaults will
apply. Where appropriate, the selected default is underlined.

{} A list uf items will be contained within the braces; one item

must be selected from the list.

In }n A subscript/superscript or brackets and braces indicates the

number of choices which may be made.

GIPSY Items shown in uppercase are system-recognized words in the
GIPSY vocabulary and should be entered as shown. All words in
the GIPSY vocabulary are unique up to six characters;
consequently, only the first six characters are validated;
remaining characters are ignored but are included for
readability.

< fieldname> Items shown in lowercase bounded by carets are either
user-defined elements or a single generic term to be expanded
later in the discussion. These are separately discussed in the
text.

or . . . The ellipsis is used to indicate that repetition of the
immediately preceding information is allowed.

3.2.1 Composition Rules. GIPSY follows many of the rules of the English
language. Punctuation in the form of spaces, periods, commas, and semicolons
is part of the language and must be entered as shown in the syntactical
formats of GIPSY statements. There is a degree of freedom permitted in
punctuation if there is no possibility of ambiguity. These cases will be
addressed as each statement is discussed. As a general rule, every statement
must end with a period, and all items in a list must be separated by commas.
Spaces are significant in that, as in English, they terminate a word. The
semicolon is used to separate multiple clauses in a single sentence, such as
an arithmetic expression followed by a conditional expression.

There are some ambiguities in the English language that we should take note of
in looking at punctuation symbols. What do you see as the difference between
a period and decimal point? A hyphen and a minus sign? The way you tell them
apart is by observing the context in which they appear. GIPSY too looks at

3-3

the context but it cannot make all the adjustments that you mentally make in
deciding whether the symbol "-" is a minus sign or a hyphen.

The context rules which GIPSY uses in distinguishing these two symbols are as
follows:

a. If the symbol "-" is embedded within a string of characters, it is a
hyphen (e.g., START-TIME).

b. If the symbol .- is preceded by a nonalphabetic, nonnumeric
character (e.g., blank, comma, etc.) it is a minus sign (e.g., (PRICE
- COST)).

c. The symbol "." is a decimal point if and only if it is followed
immediately by a numeric string. In all other cases it is considered
a period.

There is one primary rule to follow when putting together a series of GIPSY
statements: all field names or other item names must be known to GIPSY prior
to their use. In other words, you must define all field names in a FDT to
GIPSY before using the fieldname in the PCS; you must define your equation
before you attempt to reference it by name.

The rules for defining field names are discussed in section 3.2.5. However,
there is one concept which should be discussed here -- the concept of partial
field notation. Partial field notation allows you to reference part of a data
field rather than the whole data field. Assume that you have a field called
DATE which contains dates in the from 26 FEB 55 but for some reason you have
only a need to look at the month. You could get to the month in either of two
ways: first, redefine the FDT to add a field name for month within the DATE
field; or second, you could ask GIPSY for the data in character positions 4
thru 6 in the DATE field. This would be accomplished by specifying DATE
(4/6). The character positions are always relative to the start of the field
and must always be specified in parentheses. The specific syntax is:

<fieldname> [(<start position> [/<end position>]))

The <start position> and <end position> must be unsigned in'egers, less than
or equal to the length of the field, designating the character positions
within the field being referenced. If no <end position> is specified, a
length of one character is assumed. Any nonbinary type data is subject to
partial field notation, but the partial field (selecting positions) will be
processed as alphanumeric. Care must be taken not to go beyond the limits of
the data field when asking for a partial field. In any statement where a
field name is used, the field can have partial field notation.

The types of data recognized by GIPSY are alphanumeric, integer, floating
point (character form with or without decimal point), coordinate, logical,
binary integer, and binary floating point. GIPSY provides automatic

3-4

conversion of the data types to match the form needed for comparisons and
computations. For example, a data field typed as alphanumeric may be used in
calculations if the contents of the selected field are numeric.

GIPSY remembers each statement that is input. Whenever a statement is
syntactically correct and complete, it is saved for the duration of the GIPSY
session unless GIPSY is told not to save it. Certain statements, however, are
logically not remembered; instead, their results are recorded. Statements not
automatically saved are noted in the discussion of the language input
statements in section 3.2.3.3; otherwise all statements are recorded on a
temporary Process Control Statement (PCS) file.

There are no card image or end-of-line requirements except as noted. That is,
any statement may be continued on as many lines as necessary to define the
entire statement. GIPSY will continue to accept input as belonging to a
single sentence until a period is encountered.

When all report descriptions are complete and you are ready to begin graphic
or geographic displays, the single command RUN must be entered.

GIPSY's error correction tools are designed to avoid unnecessary and redundant
typing. If a syntax error is encountered the input containing the error will
be redisplayed along with a set of error pointers which identify the word or
string of characters causing the error condition. Correction is made by
typing in a replacement for the information identified by the error pointers.
Do not retype the entire line; retype only the indicated information. All

__ information to the left of the error pointers is syntactically correct and has
already been accepted. Consider the following example in which an invalid
size is specified

SET SIZE BIGG.

GIPSY would respond with the error sequence

SET SIZE BIGG.
A A

Invalid character size. Allowable character sizes are JUMBO, LARGE, MEDIUM,
OR SMALL. Enter correction or a null line to delete the entire statement.

Note the symbol A " is used as the error pointer marking the range of the
data causing the error condition. This sequence is asking for a replacement
of the characters "BIGG". CIPSY will then reinitiate the syntax checking with
the first character or the replacement input that was inserted between SIZE
and the period.

If the user response to this error prompt is:

JUMBO

3-5

then the resulting statement would be:

SET SIZE JUMBO.

The replacement information need not agree in length or structure with the
information it is replacing. The only restriction is that the replacement
cannot cause the resulting input line to exceed 133 characters.

If it is desired that the entire line should be deleted rather than attempting
to correct it, a null line (e.g., carriage return with no information) will
cause the entire statement to be deleted and a new prompt character displayed.

GIPSY syntax checking is interactive; consequently, a syntactically correct
statement cannot be deleted. However, in most cases it can be replaced by
reissuing the statement with corrections applied. If you are in the middle of
a syntactically correct statement and you desire to cancel the statement, a
deliberate error will cause an error prompt at which time the statement can be
deleted. Observe the following errors and correction sequences. Note the
results following each //LIST 1 command:

>RENAME COLS ABLE THRU CHARLEI PREFIX "X-l".
Column vector not found. (248)

RENAME COLS ABLE THRU CHARLEI PREFIX "X-l".
A A

>CHARLIE
>//LIST I
RENAME COLS ABLE THRU CHARLIE PREFIX "X-l".

Catalog-file descriptors (cfd) require special attention in the GIPSY
language. The end of sentence period is generally omitted on statements which
end with a cfd to avoid confusion with the period which may be part of the
cfd.

In handling catalog file descriptors, GIPSY follows the convention that it
will remove any file it attaches from the AFT. It will not remove any file it
finds already in the AFT. Files should be referenced using the full cfd
rather than just the file name. This will allow file pointers retained by
GIPSY to be complece in the event that a data structure referencing that file
is saved.

3.2.2 CIPSY Command Options. The nonprogrammer CIPSY user may safely skip to
section 3.2.3 without loss of continuity. This section is oriented toward the
applications programmer who may be assisting the user analysts in their GIPSY
application.

When GIPSY is initiated by responding GIPSY, GIPSYD or GIPSYG to a system
prompt, several options are available. These options allow the user to enter
the statistical or geographic display module directly, to predefine files,

3-6

specify an alternative version of the GIPSY system and provide additional or
replacement modules for system execution. The average user will use only a
couple, if any, of the options; however, it may be useful to be aware that
they are available. The full syntax of the GIPSY command statement is:

GISY PRDUTIN DAFC <cfct> 4 PCS <cfd> 4

GIPSYD OPTEST CUELIB <cfd> FILE <cfd>

tGIPSYG DEV NO-MSG 0 QDF <cfd> 0

If more than one option is used each must be separated from the other by a
semicolon; the statement may be continued onto following lines by terminating
the line with a semicolon. The cfd is the catalog file descriptor
specifying the file for the option. These keywords are order dependent.
The keywords on the command have the following definitions:

GIPSY This command initiates GIPSY from the top of the system to
build the graphic structures for either graph and reports or
geographic displays or both.

GIPSYD This command initiates the GIPSY system and skips directly
to the graph and report display module. You must already
have a GDS or plan to key in the data to build it.

GIPSYG This command initiates GIPSY and transfers directly to GIPSY
the geographic output display module. This method of entry
bypasses all GIPSY data file accesses. You must already
have saved a QDF/QDT, or plan to display geographic

information not associated with a data file retrieval.

GIPSYR This command initiates GIPSY's Output Processor. Inputs to
this module can be a saved QDF/QDT and/or user specified

BOOKFILE.

DAFC <cfd> Specifies a previously saved Directive Action and File
Control (DAFC) file. See section 3.2.3.8, the Directive
Action and File Control (DAFC) file, for a more detailed
description of this file.

CUELIB <cfd> Used to override the standard cue library. The cue
library contains all GIPSY messages and system run stream
parameters.

PRODUCTION Selects the version of the system to be executed. The

OPTEST default is to use the production system that is on your
system library. OPTEST specifies an operation test version.
The OPTEST option may not be available at all sites.
Information specific to each system is maintained on that

3-7

system's CUELIB. When used, the system version must be
specified before any replacement modules are given.

GFILE <cfd> Specifies an ASCII command list parameter file. Any GIPSY
command option may be placed on the GCFILE; order,
dependency and syntax of the options must be maintained as
if they were typed on GIPSY initialization command. If the
option list on the GCFILE ends with a semicolon, the system
will return to the terminal for continuation of the GIPSY
command line options.

NO-MSG Prevents the log-on message from being displayed when GIPSY
is initiated.

PCS <cfd> Specifies a Process Control Statement (PCS) input file. See
PCS statement description, section 3.2.3.3. Note - if the
PCS option is used with GIPSYD command, GIPSY assumes a
Graphic Data Set (GDS) will be accessed by the PCS (see
section 3.3.3.8) before any displays are requested. GIPSY
will not ask for a GDS if a PCS is specified on the GIPSY
command .

FILE <cfd> Specifies the user data file. See data file description,
section 3.2.4.1.

GDS <cfd> Specifies a user file which will be used as the Graphic Data
Set (GDS). For additional information, see the GDS
statement description in section 3.2.3.6 (Note: with the
GIPSYD command, the GDS will be used for input to load a
tabular report; with the GIPSY command this option specifies
where the GDS will be written).

QDF <cfd> Specifies a user file which will be used as the Qualified
Data File (QDF). See QDF statement description, section
3.2.3.7.

module <cfd> This set of parameters allows any of GIPSY's six modules to
be deleted or replaced, and allows for the insertion of a
user module before and/or after each GIPSY module. The
standard run stream may be modified by replacing the GIPSY
module with an alternate module. The prefix PRE- or POST-
appended to the module name will cause the specified user
module to be executed prior to or after the indicated GIPSY
module, respectively. Additionally there is a PRE-MOD which
will be executed ahead of all modules. A GIPSY module can
be deleted by specifying the module name without a catalog
file descriptor. The GIPSY module indicators are as
follows:

3-8

SYNTAX [<cfd>] The language syntax module which handles all language
statements up to and including the RUN statement

DATSEL [<cfd>] The data retrieval module

MTXGEN [<cfd>] The module which builds the tabular report

DISPLA [<cfd>] The reports and graphics display module

GEOMOD [<cfd>] The geographic display module

GDR The Generalized Data Reports Module is used to produce user
specified textual reports. See section 6 for details on
this module.

The full definition of <module overr .ds> syntax is:

PRE-MOD [<cfd>]
PRE- SYNTAX [<cfd>]
SYNTAX [<cfd>]
POST-SYNTAX [<cfd>]
PRE-DATSEL [<cfd>]
DATSEL [<cfd>]
POST-DATSEL [<cfd>]
PRE-MTXGEN [<cfd>]
MTXGEN [<cfd>]
POST-MTXGEN [<cfd>]
PRE-DISPLA [<cfd>]
DISPLA [<cfd>]
POST-DISPLA [<cfd>]
PRE-GEOMOD [<cfd>j
GEOMOD [<cfd>]
POST-GEOMOD [<cfd>]

3.2.3 Classification, Title, and Auxiliary Functions. The statements
discussed under this heading set up the operating environment in terms of
defining classification markings, titles, current character size, GIPSY input
source statement location and supporting files.

3.2.3.1 Classification Marking. A classification statement specifies the
classification markings which are to appear on each report. This marking will
also appear at the top of the display screen after CIPSY clears the screen.
The syntax of the classification statement is:

CLASS [(SIZE <size option>, COLOR <color option>, TOPBOT)]
<classification code> " <textual classification> ".

Size specification may occur either before or after the classification caveat.
The <size option> identifies the desired size of the text displayed, and may
be any of the following:

3-9

JUMBO J MEDIUM MED M

LARGE L SMALL S

If the requested character size does not exist on the device on which the
classification will be displayed, the size parameter will be ignored. If the
user is on a color terminal, the color option specifies the color in which the
classification will be displayed. If on a non-color terminal, the statement
will be ignored. The TOPBOT option will display the classification at the top
and bottom of the page. The classification caveat may be either a string of
characters enclosed in quotes or one of the following classification codes to
be translated as shown:

Codes Displayed Classification

ZZZ None
UZZ, UNC, U UNCLASSIFIED
CZZ, CONF, C CONFIDENTIAL
SZZ, SEC, S SECRET
TZZ, TS, T TOP SECRET

The classification will appear at the top and bottom of each page of a tabular
report and at the top of graphic displays. If the TOPBOT option is specified
the classification will appear at the top and bottom of graphic displays. If
no size is specified and the device on which the display is generated has
multiple sizes, the largest character size is used. The classification
becomes a part of the graphic data set (GDS), so that if a GDS is saved and
recalled at a later time, the proper classification remains associated with
it.

The CLASSIFICATION statement may be reissued at any time to alter the caveat.
The followiig are valid classification statements:

CLASS U.
CLASS UZZ.
CLASSIFICATION (SIZE SMALL) "FOR OFFICIAL USE ONLY".
CLASS "TOP SECRET" (SIZE L).
CLASS TZZ (SIZE JUMBO).
CLASS (SIZE S) UNC.

If all the above statements were entered in the sequence shown the reports
would come out marked UNCLASSIFIED. Particular attention must be paid when
using literal strings as a classification. The literal string must always be
enclosed in quotes. Classification codes must not be enclosed in quotes.

3-10

3.2.3.2 Report Titles. The TITLE statement allows the specification of a. multi-line, multi-size heading for the GIPSY outputs. Each line is
independently centered on the line at the top of the page.

The syntax is:

TITLE [(LINE <line number>, SIZE <size option>, COLOR <color option>)]
" <first line of title> " [; [(LINE <line number>, SIZE <size option>,
COLOR <color option>)] " <next line of title> "]...

The LINE option allows the user to specify the line number for each line of
title. Blank lines will be inserted automatically into the lines of title if
required.

SIZE and COLOR specifications follow the same syntax and semantics as in the
CLASSIFICATION statement in section 3.2.3.1. These options are placed before
the text of the line of title. The line of title is entered next enclosed in
quotes. Multi-line/multi-size headings can be generated by repeating the
title specification (excluding the word TITLE and the period) as often as
desired. Each repetition of the title specification must be separated with a
semicolon. The statement must always end with a period. If a character size
is not specified, the size will default to the currently active character
size. If a size is specified on one line, all succeeding lines will have the
specified character size until another size specification is encountered.

The TITLE command to the title on the tabular report in figure 2-5 was:

* TITLE
(SIZE LARGE) "PERSONNEL STRENGTH PROFILE BY ASSIGNED MISSION";
(SIZE M) "BASED ON AUTHORIZED AND ASSIGNED STRENGTHS";
(SIZE SMALL) "(GIPSY SYSTEM TEST NO. 1)".

3.2.3.2.1 Modifying Title Lines. The MODIFY TITLE statement permits the
replacement of a single line in a multi-line title. The syntax is:

MODIFY TITLE (LINE <line number> [,SIZE <size option> , COLOR <color
option>]) " <line of title> ".

The LINE specification muzt be included in the statement and must precede the
text of the replacement line. The SIZE and COLOR specifications are optional.

The MODIFY TITLE statement can also be used to add line to an existing title.
Blank lines will be automatically inserted if required.

3.2.3.3 Language Input. GIPSY language statements are called Process Control
Statements (PCS). GIPSY statements can be input either through the keyboard
or from a user file. The PCS statement is the vehicle through which you tell
GIPSY to start accepting the language statements from a user file. The syntax
is:

3-11

PCS { <cat/file string>}

If an asterisk is supplied instead of a cat/file string GIPSY will use the
contents of the TSS current file as your PCS input; if a cat/file string is
supplied, the contents of the file will be used.

The specified file is immediately detached after its contents are copied to
work space. Consequently, -he specified file name does not remain in the TSS

Available File Table (AFT), unless it was attached by some application other

than GIPSY. This statement, and all statements in which a cat/file string

is specified should have no other statement following on the same line. Note
that it is possible to have an imbedded period within the cat/file string

possibly creating an ambiguous situation. The cat/file string must be

entirely contained on a single line of input.

When the PCS statement is encountered, GIPSY automatically switches over to

the specified cat/file string for the next input. It will stay in this mode
until a RETURN statement is encountered, another PCS statement is encountered,

or all statements on the PCS file(s) are processed, in which case GIPSY will

revert back to the terminal console input mode. If there are errors in the

PCS file, GIPSY will allow them to be corrected via the standard error

correction procedure. The system automatically returns to processing with the
next line in the PCS file. However, if the statement containing the error is

deleted, PCS file processing is terminated and the system reverts to keyboard

input. A RETURN statement will resume PCS processing at the point of

interruption.

The PCS file may be either an ASCII or BCD file. Line numbers are optional;

if supplied on the PCS they will be automatically stripped off prior to being

syntax checked. The file itself will not be altered unless the PCS is resaved

on that file. GIPSY neither creates nor interprets line numbers. To allow
the PCS file to be built and maintained by other line number oriented

processors line numbers are permitted if desired. Note, however, that line

numbers cannot be typed into GIPSY, they only occur on prestored PCS files.

If the PCS file contains a PCS statement, the contents of the new PCS file

effectively replaces that particular PCS statement. There is no limit to the

depth of nesting of PCS files as long as they are not used recursively. The

PCS file may contain all statements needed for an entire run - including the

graphic display commands. Figure 3-2 shows the use of a PCS statement. The

only statement input was the PCS statement -- the one with the prompt

character showing.

Every statement which is complete and syntactically correct is recorded in a

data list called a temporary PCS. This will allow all input statements to be

saved in user space for later recall. A PCS statement, however, does not get

recorded onto the temporary PCS; all statements extracted from the PCS file

are recorded instead.

3-12

Vz

4.' 0

>- n.' (A-
U)$ u Ai

W 'C a ru

CUL UAJ V)
V) w

= L 40

ov.* LI W ('10 04

Oa* x w-

40W1 j o~-. L I--- N * I
Wf EA =0:1- =0 Ul .
U) -jhJw0 w x U) Z Ir 4

C CU La.. U. Q 1- I--a w -MQO 4)~W '
>O~f o* w *n A- (* Q--

c -4c Q f- C (A~ - .'(-f "z
m L I- U) > c 01 a - $-.I.LL&.Ia.O

* I. w CA- m a ~ E

'cn 00' (n >IZ0 x IX

w \ (A- C\ I- c
(-) Do La WC(0 ~ ..r't ** ccEcccx 4)

o* (CL.If W -.0 m I- MMMUw =-

CL W)a~. '- CL

E 0 0 L; J o - P" oC0. Is
LLiI W 0 1 0 0 E % " .- QE W I

Lii L CLIQ j CLX 0 - L& 0 -. J N cQE()
- O." 1 L A Wn~ W * 0 > P".'E 4 mw-pp

LhJ m-La-i N N N.J -a n W0 P- C W
c oo"M)NI-0 0 00 MCC :> 0 CU-fII W

*>w (A, (A~ c " n

3-13

3.2.3.4 Changing Language Input Modes. The RETURN statement allows one to
return to either the PCS file mode of input or return to th- terminal mode of
input from the PCS. The statement syntax is:

RETURN TO { PCs{TERMINAL)

RETURN TO PCS will cause GIPSY to resume input from the PCS file at the point
of departure. RETURN TO TERMINAL will cause a planned detour to the terminal
keyboard for input to insert statements or to respecify an existing statement.
When all statements in the PCS are gone, GIPSY automatically returns to
terminal keyboard for input.

The prompt character >" will be lisplayed if GIPSY is expecting keyboard
input. The single exception is when a display is completed. In this case
GIPSY rings the bell to signify completion of the display. A null entry
allows GIPSY to resume.

It is possible to inadvertently cause GIPSY to return to the terminal keyboard
for input due to an error in a PCS file statement that was not corrected, or
by inputting a command, rather than a null entry when a completed display is
on the screen. In such cases, the interrupt command //RETURN should be
entered to allow resumption at the point of departure. The interrupt command
performs the action but does not cause the statement to be recorded on the
temporary PCS. This allows the validity of the PCS written out by the SAVE
command to be retained.

3.2.3.5 Operating Environment Attributes. The SET statement is used to
control the environmental attributes associated with a given terminal session.
It is used to control the character size of the displayed data, automatic hard
copy functions, display of prestored process control staLements, etc.

The SET statement causes the indicated attribute to be set up immediately.
The setting of that attribute remains in effect until it is respecified.

The syntax forms for this statement are:

(1) SET [AUTO) COPY ONF

WAIT
ECHO
RECORDING
DTG
DATE
GRAPHICS
CLEAR
MESSAGES

3-14

(2) SET 'AUTO] WAIT [TO] <number>

(3) SET SIZE [TO] size option

(4) SET FONT O }

The iONT option is used on the WIS Workstation only. It allows the uscr to
use the WIS Workstation resident font characters instead of the GIPSY resident
characters.

There are many operating envir rxent attributes con,-rolled by the SET command.
Generally they will be discussed in the section where those attributes are
defined. This section discusses only those attributes which apply to the
entire language set.

The words AUTO and TO are included in this statement for readability and
clarity of intent. They do not affect the setting of attributes.

The next statement after a SET statement wll be performed under the
conditions established under the SET statement. All subsequent statements
will 1-e affected by the 'LT.

The CCPY functiin controls the automatic creation of a hard copy via some
"video" copier attached to the terminal. If COPY is set to ON, a copy will be
made of each display before GIPSY clears the screen to move on to the next
function. If COPY is set to OFF, no copies are made -- this is the default
mode. Tlis is a Textroniy command and will only work on Tektronix terminals.

The WAIT function controls the timing wait between displays. If WAIT is set

to ON, GIPSY will wait fo1 " an input from the user (e.g., carriage return)
before resuming with the next predefined function. If WAIT is set to OFF,

GIPSY proceed to the next step without waiting for user response WAIT may
also be set to a specific time period before continuing with the next step.

If one sets AUTO WAIT to OFF and AUTO COPY to ON, G'rSY can execute es
of commands to create graphic displays and make a copy of the disp s fast
as TSS will allow them to be generated. The effect is to give one a. -line
"graphic printer". These two options used in conjunction with a PCS f. will
allow automatic hard copies of reports From a command sequence using, perhaps,
ditferent data for each run.

The ECHO function dictates whethzi: statements processed from a PCh file are to
be displayed on the screen as they are read. If ECHO is set to OFF, the
outputs 're nroduced but command. f-om the PCS file are not displayed unless
an error is detected. The default mo6A' i' ECHO ON.

3-15

The SIZE function defines the default character size. This character size
will je used for character output not explicitly specified elsewhere. The
possible values of <size option> above are the same as the size option defined
under the CLASS statement in section 3.2.3.1. If this command is issued from
a device which does not have the character sizes defined, the statement will
be validated, but will not cause any action. As the character size is
changed, GIPSY automatically readjusts all subsequent displays to the new
character size.

RECORDING is a special case. It is used to establish whether or not GIPSY
will record the statements onto the temporary PCS. RECORDING is ON unless
otherwise set. This makes it possible to save all statements entered so they
can be recalled at a later time as a syntactically correct PCS file. How this
is accomplished is discussed under SAVE/RESTORE.

If DTG (Date Time Group) or DATE options are set on, GIPSY will display the
current time in the upper right corner of all reports. The time is obtained
from the H6000 computer, and is in the form "24 Jan 90" if date is specified
or "1342 24 Jan 90" if DTG is used.

The GRAPHICS option allows the user to turn GIPSY's graphic capability on or
off. Normally the setting of this capability is done automatically during
GIPSY log-on depending on the terminal type (e.g. graphics is set off on a
VIP). However, there may be times when the user has need to control this
feature.

The CLEAR option allows the user to override GIPSY's automatic screen clear.
Setting AUTO CLEAR to OFF enables the user to place one report or listing on
top of another. The default value for this option is ON.

The MESSAGE option allows the user to suppress warning messages and
information messages. This capability is especially useful when creating
user-friendly interfaces where the appearance of these messages would be
distracting. Error messages, which require a corrective action by the user,
will still be displayed. The default for this option is ON.

3.2.3.5.1 Define Terminal Command. The DEFINE TERMINAL command allows the
user to either alter some of the terminal default characteristics of a
terminal or to entirely replace the system-defined parameters of a given
terminal with the parameters of another. The syntax for this is:

HEIGHT r-] <decimal val.ue>
WIDTH [-] <decimal value>

DEFINE TERMINAL SCALE [-] <decimal value>
PROMPT f-] <integer value>
CAPABILITY [-] <octal value>

{ <device number>

TYPE H- <device acronym>

3-16

The terminal HEIGHT and WIDTH refer to the viewable area of the terminal

screen in inches. The SCALE represents the number of addressable pixels
across the terminal screen. Because these three parameters are interrelated

in calculations involving displays, they should be altered proportionately to
avoid unpredicted results. The lower left corner of the terminal screen will

always be point of origin no matter how these parameters are adjusted.

The prompt character that indicates GIPSY is awaiting input is the symbol ">".

This can be changed to another character by entering an octal string of 12

digits after the keyword PROMPT. In order to have the prompt character

displayed at the beginning of a new line, it is necessary to input 015012

(carriage return and line feed) as the first six digits of the octal string

followed by six more octal digits to define the new prompt character. For

example, the command "DEFINE TERMINAL PROMPT 01502077000." will cause the

symbol "?" to be the GIPSY prompt character.

The CAPABILITY setting is an octal string which indicates the on/off position

of 36 bit switches that represents the terminal-dependent capabilities used in

GIPSY processing. Since the resetting of the capability bit cannot overcome

the inherent limitations of the hardware of a given terminal, alteration is of

limited usefulness beyond the system programming level.

The above parameters are initialized with default values when a GIPSY session
is initiated. The user may examine these values by entering the interrupt
command //TRMDEP. (Note: the SCALE parameter is stored in variable TSCALE in

the TRMDEP area).

The keyword TYPE signals a requested change of all the default characteristics

of a terminal to those of another terminal type within the hardware

limitations of the user's terminal. The ability to redefine the terminal type
would be useful in several instances such as defining a terminal that was

incorrectly defined to GIPSY or switching between a VIP (BIS7705) and a WWS

(Tektronix/GIPSYmate) modes on the WIS Workstation. The DEFINE TERMINAL TYPE

command also makes it possible to create a DAFC containing graphic commands on

a non-graphic terminal such as a VIP that has been redefined as one of the

terminals with graphic capability and to later produce displays using that

DAFC on that previously specified type of graphic terminal.

It should be noted that a redefinition of the terminal type will cause a re-

initialization of the internal storage areas related to terminal

characteristics and capabilities including any of the other DEFINE TERMINAL

commands as well as re-initialization and previously entered SET commands

including those involving protections, picture processing, copy, replace mode,

etc.

The terminal type can be specified either by the device numbers or the

acronyms listed below:

3-17

DEVICE # ACRONYM TERMINAL DESCRIPTION

01 T4014 Basic Tektronix 4014-1

02 VIP VIP 7705

03 VIP786 VIP 786W

08 T4014I Tektronix 4014-1 with Intelligence

09 T4027 Tektronix 4027

10 BATCH Batch GIPSY

11 T4014W Tektronix 4014-1 over WIN

13 T4107 Tektronix 4107

18 WWS WIS/CUC Workstation

20 AT PC/AT Compatible Workstation

21 MAGIC WIS Workstation (UNIX)

3.2.3.6 Saving GIPSY Data Structures. GIPSY creates several information
structures in the process of graphic query. We call these independent
fragments of information subsets. The SAVE statement is the vehicle through
which the user can save these subsets for later recall or other uses. The

SAVE statement creates a permanent file and writes the designated subset to
it. RESAVE will perform the same function except that it will overwrite an
existing file rather than create a new one. The action requested by these
statements will be taken immediately. The requested subsets will be saved as

they exist at the time the SAVE/RESAVE statement is issued. The GIPSY
SAVE/RESAVE is slightly different from the standard TSS SAVE/RESAVE in two
ways. First, there are several GIPSY subsets to which the GIPSY SAVE/RESAVE

can apply, so the subset which is to be saved must be specified. The TSS
SAVE/RESAVE only applies to the current file (*SRC). Second, GIPSY removes
the file from the Available File Table (AFT) after the information is saved.
The last difference is an important one for those users accustomed to TSS.
Files that will be used in Batch GIPSY must be created prior to GIPSY

execution and saved with a "RESAVE" command.

3.2.3.6.1 Saving the File Descriptor Table (FDT). The command to save or
resave the File Descriptor Table discussed in section 3.2.5 is as follows:

(SAVE FDT [ON] <cat/file string>
RESAVE F

The saved FDT file contains the data structure describing a user's data file

to GIPSY.

3-18 CH- 1

3.2.3.6.2 Saving the Process Control Statements (PCS). All valid statements
processed during a user session in GIPSY are written to a temporary file known
as the Process Control Statement (PCS) file. At any time, the file may be
saved or resaved by issuing the following command:

RESAVE J PCS [ON] <cat/file string>

When the SAVE PCS command is processed, the contents of the temporary PCS
(i.e., syntactically correct statements that have been processed) are copied
to the indicated file. The file is written in standard TSS ASCII format

without line numbers. Subsequently, this file can be used as GIPSY inpuL to
repiat the same user session at a later time. This file may be edited to
create a new PCS and then passed through GIPSY.

3.2.3.6.3 Saving the Graphic Data Set (GDS)/Report. The Graphic Data Set
(GDS) is the basis for all statistical reports (Bar Graphs, Pie charts, Gantt
Charts, etc.) in GIPSY's Display Module. The GDS is the end result of data

retrieval and data manipulation within the Build Tabular Report structure.
The GDS may contain any number of reports. Each report comes complete with

its own classification, title, and matrix vectors.

By default, the GDS is a temporary system file. The user may save this file
by issuing a declarative GDS statement prior to the RUN command or by
specifying a SAVE GDS command after the RUN command.

. The syntax of the GDS statement is:

GDS <cat/file string>

The specified file is attached by GIPSY and written when the GDS is created.

The GDS statement is a declarative, specifying the file to which all GDS
action is directed. Care must be exercised when using a previously saved GDS.

If a user-specified GDS is attached at report generation time, the new GDS
will be written to the file attached as a GDS regardless of when it was
attached.

ACCESS GDS <cat/file string>

Any time after a graphic data set has been generated, the GDS may be saved or

resaved to a permanent file with the command:

{ SAVE GDS [ONJ <cat/file string>
RESAVE [

3.2.3.6.4 Saving the Qualified Data File (ODF). The Qualified Data File (QDF)
is the data used as input for the report generation following data selection.

The QDF contains only those fields referenced by the user for use in the
display, geographic and/or output processor modules. During data selection,

3-19

each referenced field for each record which passes the retrieval criteria, is
moved to the QDF in the order referenced. Specific order of reference may be
forced by use of an INCLUDE statement prior to using any field in another
GIPSY statement (see section 3.2.3.10).

By default, the QDF is a temporary system file. If desired, the user may
declare the QDF to be a permanent file in the user space by issuing the
declarative QDF statement. The syntax for the QDF statement is:

QDF <cat/file string>

The specified file is attached and the QDF data is written to and/or read from
this file. The QDF is created in the data selection step and used as input in
all other cases. The QDF is discussed further in Appendix E.

The temporary QDF file may be saved at any time after the RUN has been
executed by issuing the command:

SAVE QDF [ON] <cat/file string>RESAVE

3.2.3.6.5 Saving the Qualified Descriptor Table (ODT). The Qualified
Descriptor Table is similar to the FDT except the FDT describes the user's
data file while the QDT describes the QDF. The command to save the QDT is as
follows:

{ SAVE } QDT [ON] <cat/file string> .

3.2.3.6.6 Saving the Directive Action and File Control (DAFC) File. The DAFC
is another temporary file automatically create by GIPSY. The DAFC is a
continuously updated control set that reflects the current status of every
action or declarative made, including internally-controlled parameters. All
the modules of GIPSY communicate through the DAFC. The DAFC is always a
temporary file. However, it may be saved into permanent user space with a
save command. When the DAFC is saved, a checkpoint of the entire GIPSY system
is recorded on the specified file. Subsequently, this DAFC file can be
restored to resume execution at the point when the save was taken by issuing a
DAFC statement. A previously save DAFC may be restored by issuing this
stptement:

DAFC <cat/file string>

This statement will cause the specified file to be copied back to the system

DAFC, thus restoring the status of every element of GIPSY back to what it was
at the time the DAFC was saved. Execution then resumes with the restored DAFC
contents and any remaining PCS statements are processed. All required
permanent files tor which the <cat/file string> was specified will be
automatically reattached. However, note that any tem~orary files in use when
the DAFC was saved are not automatically saved and so cannot be automatically

3-20

restored. The user must assume responsibility for availability of any data
structure normally saved on temporary files (i.e., QDF, GDS, or user file)
which must be restored to achieve the desired objective. Furthermore, any
DAFC created under a release of GIPSY other than the current version must be
recreated to insure full operational reliability. A DAFC may be saved or
resaved in one of three ways:

CASE 1

ESAVE J DAFC [ON] <cat/file string>RESAVEI

This command will cause two actions to occur. First, GIPSY will take a
"snapshot" of itself as it is currently configured. Everything about the
current session will be captured. For example, terminal attributes such as
background and foreground colors and character sizes, file descriptors, Symbol
Tables, Math Tables, Logic Tables, Field Tables, etc. and pointers to
permanent files. Secondly, any remaining PCS statements will be executed and
remembered. When the DAFC is called into a new GIPSY session, the "snapshot"
will be restored. GIPSY will be loaded into the module in which the SAVE
command was issued and all executable PCS statements will be processed.

CASE 2

Optionally, you may SAVE or RESAVE the DAFC to resume execution within a
specified GIPSY module. The optional syntax is:

RSAVE DAFC FOR <module> [ON] <cat/file string>RESAVEI

where <module> is any valid GIPSY module as specified in section 3.2.2, GIPSY
Command Options.

If the "FOR <module>" option is specified, GIPSY will transfer to the
specified module. The DAFC will be saved and any remaining statements on the
PCS will be executed. When this DAFC is called in to initialize a new G±PSY
session, execution will begin in the module specified in the "FOR <module>"
option and any unprocessed PCS statements will be processed. All PCS
statements following this DAFC save command must be valid for the module
specified.

CASE 3

RESAVE DAFC WITH STOP PCS [ON] <cat/file string>

or

0 3-21

{SAVE DAFC WITH STOP PCS FOR <module> [ON] <cat/file string> .

When the option "WITH STOP PCS" is specified any remaining PCS statements will

not be executed. When this DAFC is reloaded, GIPSY will load at the
appropriate module and begin execution with the PCS statements that had been
specified when the DAFC was originally saved/resaved.

3.2.3.6.7 Saving the QDF or GDS in the Data Interface Format (DIF). This
option will save the contents of the QDF or GDS to a file as discussed

previously. However, the data will be rearranged into a DIF format. DIF is a
recognized standard for passing data from one software package to another.

The command to create a DIF file is:

SAVE
QDF

RESAVE DIF FOR [ON] <cat/file string>
GDS

The user must specify the source of the data to be converted to DIF format.
This is done by specifying QDF or GDS. If a QUALIFY command is in effect,
only those QDF records meeting the qualified criteria will be written to the

DIF file. If a LIMIT <vector> command is in effect, only the active vectors
of the GDS will be written to the DIF file. Saving the QDF or GDS in DIF

format will require more file space than saving files in QDF or GDS format.

3.2.3.7 Saving Data Fields. Occasions may arise when it is desirable to
include specific data elements in the QDF which are not referenced by other
GIPSY statements. One of the most frequent uses is for including data fields

to be displayed when a geographic list will be produced displaying data fields
not otherwise referenced. Another frequent use is to force a specific order
of data in the QDF.

The syntax of the statement to include specific fields is:

INCUD fFIELD[S] <fieldname> [<fieldname2>]

INCLUDE ALL FIELDS

This statement simply flags the specified fields as having been referenced and

causes them to be included in the QDF and QDT. The INCLUDE statement is
defined only in the input specifications. Recall that GIPSY releases the data

file once it is read; therefore, fields not referenced prior to the RUN may
not be referenced in any geographic display.

The use of a field name in BUILD TABULAR REPORT, SYMBOL TABLE, MATH TABLE,

LOGIC TABLE block structures or in the RETRIEVE statement causes the
referenced field to be automatically included. Therefore, the INCLUDE
statement is only needed if there is a need for fields which are needed but

not referenced prior to the run or there is a need for a forced order in the
QDF. The automatic inclusion of fields referenced in the RETRIEVE statement

can be overridden by the command:

3-22

SET [AUTO] INCLUDE OFF.

3.2.3.8 Interrupt Statements. GIPSY has commands by which the user may
request information about what has been specified, or reset some environmental
parameters without altering the current process. Unlike other GIPSY
statements and commands, these commands may be inserted after any prompt
character -- even in the middle of another command. For example, you are
specifying a retrieval condition, and halfway through you are unable to recall
the spelling of a particular field name. Wouldn't it be nice to be able to
list your file description to check the spelling? The interrupt statement

provides that type of support.

Every interrupt command begins with a double slash (//), to let GIPSY know you

are interrupting, immediately followed by the command. This type of command
cannot end with a period. The // must be in the first two positions of the
input line. If an interrupt command is not recognized, it is ignored and is

considered to be a comment. If interrupt commands are included in the PCS
file, the command is executed but is not echoed back to the terminal.
Interrupt commands are not recorded on the temporary PCS and thus are not
preserved by the SAVE/RESAVE command. The following interrupt commands are

defined as shown.

//CAT [<literal>] - same as //CATEGORY.

//CATEGORY [<literal>' - displays the name of all categories. If the
<literal> is specified, the display will include only those names starting off

*with the <literal>.

//CIRCLES - causes GIPSY to display the names of all geographic circle sets
you currently have defined to GIPSY.

//CLEAR PAGE - clears the screen to start a new page; if the automatic copy

feature is on, a copy will be taken prior to clearing the screen.

//COLS [<literal>] - displays the name of all columns. If the <literal> is

specified, the display will be restricted to those names beginning with the
specified <literal>

//CONTINUE - causes GIPSY to assume that the current report or graphic page is

complete. GIPSY will then continue with the next command.

//COPY - automatically copies the contents of the current display regardless

of the automatic copy parameter.

//COPY OFF - turns GISPY's automatic hard-copy feature off.

//COPY ON - turns GIPSY's automatic hard-copy feature on.

//ECHO HOLD - command will save the current status, either ON or OFF, of the
echo process.

3-23

//ECHO OFF - terminates the echo of PCS supplied statements back to the
terminal. Only statements containing errors are displayed on the terminal.

//ECHO ON - causes all noninterrupt statements from a PCS file to be echoed
back to the terminal.

//ECHO RESTORE - will reset the echo status back to its previous state, either
ON or OFF.

//FDT - causes CIPSY to display the field names in the current File Descriptor
Table.

//FDT [<literal>] - causes GIPSY to display the current File Descriptor Table
entries beginning with the same characters as the <literal> specified.

//FDT [(ONLY)) - Displays only field names defined as FILE or FILE Extended
fields.

//GDT - displays field names defined as GLOBAL fields.

//HUH - causes GIPSY to repeat prompted error message.

//IDSII STRUCTURE - displays the File Structure Table (FST) hierarchical
record structure including the record types of the current I-D-S/II integrated
data file and all valid index key names.

//IDT - allows the user to get a list of all field names associated with the
index file process.

//LAST - displays last input statement that is incomplete or not yet acted
upon.

//LIMIT vector mode - displays the name of all vectors within the current
vector mode limit definition. The vector modes are ROW, COLUMN, CATEGORY, and
SECTION.

//LIMIT CIRCLES - displays the name of all the circles currently included in a
limit defined for circles.

//LIMIT SYMBOLS - displays the name of all the symbol sets currently included
in a limit defined for symbols.

//LIMIT TRACKS - displays the name of all the track sets currently included in
a limit defined for tracks.

//LIST [n] lists the last <n> statements entered during the current session
(i.e., content of temporary PCS). If <n> is not specified, all statements
will be listed.

3-24 CH- I

//LIST <literal> [<end literal>] - list all statements beginning with the

first occurrence of <literal> to the first occurrence of <end literal>. If no

<end literal> is specified all statements containing <literal> will listed.

0

S3-24.1 CH -I

THIS PAGE INTENTIONALLY LEFT BLANK

3-24.2 CH-1

//LOCATION - lists the location name and associated coordinate position of

geographic locations defined in a LOCATION TABLE block structure.

//LOGIC displays the names defined in a LOGIC table.

//MATH - displays the names defined in a MATH table.

//NOTE - causes the text following NOTE to be displayed on the terminal as a
message to the user of the PCS; text may be up to 126 characters on a single
line. A blank space must separate the keyword NOTE from text.

//PAUSE [n] - causes GIPSY to pause for <n> seconds before continuing with
additional activities.

//PICTURE - lists the names of pictures stored on the picture file.

//PREVIEW [n] - allows user to preview unprocessed PCS statements by listing
statements in the current PCS which have not yet been processed. If <n> is
not specified, all statements will be listed.

//PROCESS - lists the names of the GIPSY processes which have been built
through the use of the DEFINE PROCESS command.

//PURGE - purges all remaining statements from the current PCS input file.

//PURGE [n] - purges the next <n> statements from the current PCS input file.

/ //PURGE GROUP - purges the last group of statements supplied by a PCS
statement. This command would be used to purge a group of inputs which were
found to have too many errors to bother attempting to fix.

//QDT - Displays all fields defined as QDF, QDF extended, GLOBAL fields,
QUALIFY fields and all FILE and FILE extended fields which have a QDT starting
position.

//QDT [<literal>] - causes GIPSY to display all fieldnames in the QDT. If a
<literal> is specified, the display is restricted to those fieldnames
beginning with the same characters as the <literal> specified.

//QDT [(ONLY)] - Displays only field names defined as QDF or QDF extended
fields and all FILE and FILE Extended fields which have a QDT starting
position.

//QLT - Displays field names defined as QUALIFY fields.

//REPORT - causes GIPSY to display the report identifier during statistical
display processing.

//RETURN - causes GIPSY to return to the previous input mode, i.e., if reading
from a PCS return to terminal mode; if in terminal mode return to PCS mode.

C 3-25

If there is no PCS or if all statements have been processed from the PCS file,
the statement will be ignored.

//ROUTINES - provides a list of the user subroutines currently loaded.

//ROWS t<literal>] - displays the name of all rows. If the <literal> is
specified, the display will be restricted to those names beginning with the
specified <literal>.

//SEC [<literal>] - same as //SECTION.

//SECTIONS [<literal>] - displays the name of all sections. If the <literal>
is specified, the display will include only those names beginning with the
specified -literal> .

//SYMBOLS - causes GIPSY to display the names of all geographic symbol sets
you currently have defined to GIPSY.

//TEXT Causes GIPSY to display the names of all text entries in the text
table.

//TEXT [<literal>] Causes GIPSY to display text table entries beginning
with the same character as the literal specified.

//TEXT NAMED <text name> - Causes GIPSY to display all lines of text
associated with the specified <text name>

//TRACKS - causes GIPSY to display the names of all geographic track sets you
currently have defined to GIPSY.

//WINDOW - lists the window name and coordinate description of geographic
windows defined in the WINDOW TABLE block structure.

3.2.3.9 Comments. Any line beginning with a double slash (//) followed by at
least one blank is considered a comment. Comments are not displayed at the
terminal (from a PCS); they are not recorded onto the temporary PCS and have
no effect on GIPSY processing.

3.2.3.10 Executing Other TSS Commands. The experienced TSS user will
occasionally find it useful to get back to TSS to perform some function and
then to return to GIPSY at the point of departure. GIPSY's TSS command
ptovides this capability. The TSS command consists simply of the string

TSS [<single TSS command>]

After this command is recognized, GIPSY will interpret all subsequent inputs
as commands to be passed to the GCOS Time-Sharing System (TSS). This state is
indicated by the prompt character "<". A null input will return you to normal
GIPSY operations. Some potential applications of this function are to create
or access files, to edit saved SY PCS files, to execute a user module, etc.

3-26

If a single TSS command is included on the TSS statement, GIPMY will pass that
command to TSS and automatically return to normal GIPSY operation.

3.2.3.11 Clearing Data Structures. The CLEAR statement provides the
capability to clear classification and title settings and to clear all
previously entered statements from the temporary PCS. The syntax of the
statement is:

CA TITLE
(CLAS (__

3.2.3.12 Executing a User Program. User generated executable modules (H*)
may be executed within the GIPSY syntax processing. Supplemental us r
functions may be interjected by instructing GIPSY to execute a TSS compatible
H* by issuing the EXECUTE command. This command has the syntax:

EXECUTE <cat/file string of user H*>.

This command will cause GIPSY to swap itself out and turn control over to the
executable module defined by cat/file string of user H*. Upon completion of
the user program, GIPSY is restored to the state it had immediately prior to
the issuance of the execute command.

3.2.3.13 Terminating the GIPSY Session. The user can exit GIPSY by entering
the statement

* DONE.

The DONE command can be entered at any point where GIPSY is not expecting
specific input. If the user is being prompted for an error correction, the
error must first be corrected or deleted. If the user is in the middle of a
block structure, it must first be completed with an END statement before the
DONE will be accepted. All files, which GIPSY has attached, will be released

upon the termination of the GIPSY session.

3.2.3.14 GIPSY Color Processing. GIPSY provides the user with the capability
of producing graphic reports in multiple colors. Available color names and
definitions are contained in the terminal definition file (..TRM-DEF). The
number of colors which can be displayed at one time is determined by the

particular graphics terminal (7 for the Tektronix 4027, 8 for the WIS
Workstation). GIPSY gives the user the capability of setting the color in
which maps and graphs will be drawn as well as settirg the background color
through use of the SET COLOR statement. The exception to this is the WIS
Workstation which cannot modify background color. The format for the SET

COLOR statement is:

SET BACKGROUND COLOR <color name>

BACK

0 3-27

3.2.3.15 User Defined Subroutines. GIPSY has the capability cf passing data
between itself and a jser-built subroutine. Such a subroutine would be ujed
to provide a data manipulation capability which GIPSY does not have. As an
example, GIPSY could pass two coordinate values to a subroutine which would
calculate the distance between the two points and return that value to GIPSY.
A user's jubroutine library is accessed by the command:

LIBRARY <cat/file string of library>.

The LIBRARY statement identifies the file containing the user subroutines if
the cat/file string is supplied. If the statement is terminated without
supplying a file, the system-supplied user-subroutine library is accessed.
One LIBRARY statement must be supplied for each library to be searched.
User-supplied subroutines take precedence over sy;tem-supplied subroutines.
If the user library has duplicate subroutines, the last subroutine loaded will
be used. (A LIBRARY statement is not required t. access the GIPSY-supplied
$DATE, $TIME, or $ISPPTR subroutines).

3.2.3.16 JDAC Command. GIPSY has the ability through the JDAC command to
access a Direct Access Communication (DAC) program such as the WIN File
Transfer Service (FTS) subsystem, VIDEO (proper permissions are required), or
any other valid DAC program. The JDAC command is available within the GIPSY
modules SYNTAX, GEOMOD, GDRMOD, and DISPLA. It is operationally equivalent to
the JDAC command within the Time Sharing System (TSS). The JDAC command
consists simply of the string:

JDAC <DAC program name or SNUMB>

Once GIPSY recognizes the JDAC command, it is executed and the user will then
be able to interface directly with the requested DAC program. Upon
termination, some DAC programs return to the invoking subsystem while other
DAC programs require user direction. Because of this, control may or may not
return to GIPSY. For further information, refer to the termination sequence
of the invoked DAC program.

3.2.4 User Data Input. Most graphic systems require that you pre-firmat your
data into some graphic data file. In GIPSY, the data used to create graphic
displays typically comes from a user's existing data file. You do not type in
sets of x-y coordinates to create graphs. Based on your specification, GIPSY
synthesizes the data from your file to produce the graphic details. Your data
file can be a large master file, a data subset created for graphic purposes,
or simply a card image data file entered via the keyboard, a user program,
card deck, etc. In any case, you must identify the file to GIPSY. In most
cases, GIPSY will process the entire file sequentially. GIPSY has an
extremely fast input/output package so this usually takes only a few seconds.
Data retrieval can become time consuming for a large, complex file (in excess
of 4 million characters). For large UFAS sequential, relative, or indexed
files, I-D-S/II indexed files, and GFRC ISP files, GIPSY provides an index
capability which allows GIPSY to avoid reading unneeded portions of the file,
resulting in significant savings in execution time.

3-28 0

3.2.4.1 The Data File. Your data file is identified to GIPSY with the FILE
statement which has the following syntax:

FE<cat/file string>
FILE IJ

The <cat/file string> is the H6000 catalog file string locating the data file.
It is specified using the standard conventions of file access.

For GFRC and I-D-S/II integrated files CIPSY will remove the file from the
Available File Table (AFT) if the file was not already in the AFT (i.e., full
cat/file used). If GIPSY found the file in the AFT, it will leave it in the
AFT. The asterisk notifies GIPSY to use the TSS current file for the data
file.

For a UFAS sequential, relative, or indexed file or an I-D-S/li indexec tile,
the file must be specified using the full cat/file string in the FILE
statement. If the file already exists in the AFT,.a new reference will be
loaded into the AFT. As soon as GIPSY's data selection process is complete,
GIPSY releases its access to the user file.

A data file may be either TSS ASCII or BCD. GIPSY will translate the ASCII
data to BCD for GIPSY processing for most file types.

3.2.4.2 The Index File. GIPSY can retrieve data using file indexes.
For UFAS indexed files and the I-D-S/II indexed and integrated files, GIPSY
uses the indexing facilities provided by these file formats. The user must
know the locations of the index fields (aLso known as key fields) within the
record of the user's data file. The index fields must have been defined as
either prime or alternate keys when the data file was created. For an I-D-S/II
integrated file the valid key fields will be displayed at the end of the GET
IDSII STRUCTURE statement, the //IDSII and //FDT statements. When the GIPSY
user builds the File Descriptor Table (FDT) within GIPSY (see section
3.2.5.1), the index fields to be used must be defined as they occur in the
data record of the user's file. The field names can be different, bUt the
starting positions of the index fields must match those defined in the user's
file. There is no need to further describe the index fields for UFAS indexed
or I-D-S/II files, that is, do not use the ADD TO INDEX statement in the FDT
block structure. When using the INDEX statement for UFAS indexed or I-D-S/II
files, the index file must be specified using the full cat/file string.

For ISP files, the GIPSY user can build a GIPSY index file. The GIPSY index
file is a file to identify the location of key data elements within a large
GFRC ISP data file. Building the GIPSY index file is discussed in section
3.2.5.2. This file is not to be confused with the ISP index. GIPSY's index
file is a small sequential file consisting of major key data elements and an
associated ISP pointer to the data record. GIPSY first reads the index file
looking for conditions specified by the user. When a condition is satisfied by

3-29 CH-l

looking at the index, CIPSY then reads only the corresponding record from the
data file.

Consider the illustrated ISP data file and its associated index in figure 3-3.

Let us assume an example in which the user needs only the data records in
which the ULC field contains the code "BN" and the DE field contains the code
"Q". GIPSY would look at the index and find that only units 2 and 7 need to
be read from the data file. GIPSY then uses the $ISPPTR values to go directly

to the data records in the ISP data file containing units 2 and 7. The
remainder of the file will not be read.

The syntax of the statement identifying the index file is:

INDEX <cat/file string>

The index file may be created by a user application program or it may be
created by GIPSY as a data subset.

3.2.5 Describing the Data Records. The file records which the GIPSY user
must describe are the data file records and the index file records (if an
index file is used). The data in the index file are generally the same as
selected fields from the data file. However, these are two separate fields
for separate purposes. Consequently, the fields described for the data file
are separate ard distinct from those in the index file, when the user has an
index file.

3.2.5.1 Describing an I-D-S/II Integrated file. The command GET IDSII
STRUCTURE must bi entered after an I-D-S/II integrated file is designated as
the current file in the FILE and INDEX statementP This command results in
the display of the record type identifiers to be used in subsequent GIPSY
commands to identify a specific record type. This command also causes the
creation of the File Structure Table (FST) which defines the I-D-S/II
structure that will be stored with the File Descriptor Table (FDT) described
in subparagraph 3.2.5.2.

3.2.5.2 Describing Data File Records to CIPSY. GIPSY allows the user to
describe his/her data file to GIPSY rather than forcing a predetermined format
on the user's data. The data records are described to GIPSY by means of a
File Descriptor Table (FDT). The FDT may be recalled from a previously saved
file containing an FDT or it may be specified in-line. In any case, the data
fields must be defined prior to attempting to use them in GIPSY statements.

If an acceptable FDT already exists, the data fields described therein may be
made available to GIPSY by issuing the command

FDT { <cat-file string>

An * indicates that the FDT is in the TSS current file. The catalog file
string points to an ASCII or BCD file containing a GIPSY File Descriptor

3-30 CH-I

Table. This file could have been built and saved through GIPSY as described

below or it could have been produced by some other means.

If the data file is an I-D-S/II integrated file, a File Structure Table (FST)
that defines the hierarchical record type identifiers of the file will have
been stored with the FDT and will also be made available when the FDT command
described above is issued.

If a File Descriptor Table does not exist, one may be specified in line by
describing the data records in the block structurc bounded by BUILD FDT and

END. This block structure may also be used to modify an existing FDT. The
syntax for the structure is:

3-30.1 CH-1

THIS PAGE INTENTIONALLY LEFT BLANK

3-30.2 CH-l

ISP Data File CIS dc.T l

U li-2 UL IU IJL

flTm ULC-BN DEQR I ~ *47-

UNIT-5 ULC-RCT DE-Q DI5

UiNIT-6 ULC-CPY DEwN -

:UNIT-7 U'LC.B&:% DE-Q

UNTnULC-DIV DE&5

Figure 3-3. Index/File Relationship

3-31

BUILD FDT.

[<commands to ADD field definitions> .
[<commands to INSERT new field definitions>].

[<commands to DELETE old field dpfinitions>].
[<commands to LIST the FDT>].
[<commands to SORT the FDT>].

END.

The <commands to ADD field definitions> consists of the key words ADD TO along
with one of the options listed below and as many definitions as needed to
create a new file description or to augment an existing file description.

F FILE
INDEX

ADD TO GLOBAL
QUALIFY (
GENERIC J<record type>

< <defined fieldname>, [<type and length>] '

<fieldname> <starting position>, <type and length>

[<defined fieldname>, [<type and length>] }
<fieldname2> <starting position>, <type and length>

<null line>.

The ADD TO FILE clause is the default mode for the BUILD FDT structure. It
indicates that the FDT definitions apply to the entire specified data file.

The single word "ADD." following the BUILD FDT command has the same result as
the ADD TO FILE clause. This clause is not valid for I-D-S/Il integrated data

files.

The ADD TO INDEX clause is discussed in subparagraph 3.2.5.3. The ADD TO
GLOBAL and ADD TO QUALIFY clauses are described in subparagraph 3.2.5.4.

The ADD TO GENERIC option will allow the creation of a generic record level
FDT entry to be applied against record types that are not covered by the more
specific ADD 'fO <record type> entry. This could be used to retrieve data from
some types of records as a block of data rather than individual fields. This
clause is only valid for I-D-S/II integrated data files.

3-32 CH -1

The <record type> is a unique four digit identifier assigned to each record
type in the I-D-S/II integrated hierarchical record structure. The ADD TO

<recordtype> will allow the creation of a record level FDT definition for a
specific record type. An ADD TO <record_type> clause will have to be created
within the FDT for each record type to be atcessed. The field names for each
record type miust be unique within the -..-ire FDT. The ADD TO <record type>
option is only valid for I-D-S/II integrated data files. For I-D-S/II
integrated data files any field names that are packed decimal must be
described in the FDT up to the point where no further fields are described for
that <record-type>.

Upon recognizing the FDT ADD clause, GIPSY will display a message indicating
that it is ready to accept a field definition. This message will be repeated
after each field is successfully defined. Then the next new field definition
may be entered. A <null line> (e.g., carriage return) will return you to the
mode to enter another FDT command. The <fieldname> is a user-specified name
that will be used to reference the data starting in the character position
within the record specified by starting position. The name may have a length
of 1 to 12 alphanumeric characters, th, first characters of which must be
alphabetic. The name may contain imbedded hyphens or underscores. No other
special characters are permitted. The <starting position> must be an integer
value defining the location within the data record where GIPSY is to look for
the data. Alternately, it may be a previously <defined fieldname>. This
option will be discussed later in this section. The length and type of data
contained in the defined field is specified by <type and length>. The <type
and length> must be specified in one of the following forms:

A <n> The type indicator A indicates alphanumeric data. The length
indicator n must be specified as an integer value designating
the number of characters in the field. There must be no space
between the type and length (e.g., A132 indicates a 132
character data field containing alphanumeric data). The A can be
used for numeric data; GIPSY will treat it as an integer in
computations and as alphanumeric at all other times. Partial
field definitions can be applied to this type of data.

0 3-32.1 CH-1

THIS PAGE INTENTIONALLY LEF' BLANK

3-32.2 CH-1

I <in> Thc type indicator I designates integer data. Integer "".pt- ddu.

consists of a string of numeric digits (0-9). The length of thi,<
in.eger field is specified as an integer value n immediately
adjacent to the type indicator I (e.g., 16 represents an integer
field with six digits). Integer data is assumed to be right

justified in the field: blanks will be treated as zero. If c
record contains an alphanumeric value in a type I field, the
value will be treated as null.

C <n> Type C indicates coordinate-type data. Specifically this is
composed of a latitude and longitude in one of the following
formats:

Format Length (n)

DDHDDDH 7
DDMMHDDDM.iH 11

DDMMSSHDDDM4MSSH 15

where the D's represent degrees, M represents minutes, and S

represents seconds. That portion which precedes the first H is
latitude, and that H must specify the North-Souch hemisphere - N
for North, S for South. The part which follows the first H
represents longitude and the last n must specify the East-West
hemisphere - E for East, W for West. The minutes and seconds
may contain integer values from 00 through 59, inclusive. The

latitude is one to three sets of integers whose value ranges
from 00 through 90 degrees; the longitude ranges from 000
through 180 degrees. GIPSY will ignore any invalid coordinate.

F <w.d> Type F is used when the field contains floating point (or real)

data values. Thp decimal point may be physically in the data
field or it may be implied by the description of the field. The
w indicates the width (or length) of the field and the d

indicates the number of digits to the right of the decimal point
contained in the field. A decimal point appearing in the data
will override the number of decimal places specified in the

field definition. For example, assume that a data field TALLY
is defined as F7.3, a value of 1234567 in TALLY will be read by

GIPSY as 1234.567 while a value of 1.23456 will be read as
1.23456.

P <w.d> The type P designates a packed decimal value. The packed

decimal type is only valid for the I-D-S/II integrated file. It
is stored as two digits per 9-bit byLe. When LU, the packed
decimal is expanded into GIPSY's internal format. The packed
decimal value will be treated as either integer type data or
floating point data, depending upon the number of digits to the
right of the decimal point. The w indicates the width (or
length) of the packed decimal field. The width of the field

must include the space required for the sign if present and the

3-33 CH-1

number of positions right of the assumed decimal point(do not
include the decimal point in the width). In short the width is
the sum of digits left and right of the decimal point and space

Lor the sign if piesent. The d indicates the numb.r of digits
to the right of the decimal point. The d may be omitted when it
is zero.

BI The type BI designates a binary integer value. The binary

integer does not have a user specified length. The field must
be a 36-bit binary word in processor memory format. The length
is thus assumed to be 6 BCD characters.

BF The type BF designates a binary floating point value. The BF
item represents floating point data in internal H6000 format of
36 bits. A length of one word (6 BCD characters) is assumed and
is not user alterable.

3-33.1 CH-1

THIS PAGE INTENTIONALLY LEFT BLANK

3-33.2 CH-1

L.<n> The Type L indicates a logical bit field where n indicates the
bitnumber within the 6 bit BCD character (the leftmost bit is
bit 0). The logical bit field may only be used as a true/false
condition within a conditional expression. 0 is false, 1 is
true. A definition of:

COMBAT-READY 21' L.4.

indicates that the fifth bit of character 24 in the record is to
be treated as a logical variable. This field could be used in a
conditional expression such as RETRIEVE IF COMBAT-READY AND
SERVICE EQ ARMY. This condition would be satisfied for all ARMY
records in which the 5th bit of character 24 is a one.

A null line may be entered in response to the new entry message to terminate
the ADD process. Another BUILD FDT command may be entered at this time or an
END statement may be entered to terminate the BUILD FDT block structure.

It was mentioned earlier that a previously defined fieldname could be used as
the <starting position> instead of an integer number. When this is used as
the <starting position> the starting position, length, and type attributes of
that field are provided to the new field as defaults. If <type and length>
are specified, the specified parameters, of course, override the defaults.

Recall that partial field notation can be appended to any field name; this
applies here as well. Observe the following sequence:

DATE 26 A9. may be used to define a field containing data in
the format of 15 JAN 80 beginning in position 26
in the data record.

DAY DATE (1/2). creates a 2-character alphanumeric field starting
in position 26 called DAY. Starting position is
taken from definition of DATE.

MONTH-YR DATE (4/9). defines a 6-character alphanumeric field starLing
in position 29 called MONTH-YR.

YR-DIGIT MONTH-YR (6). defines a 1-character alphanumeric field starting
in position 34 called YR-DIGIT (e.g., the 0 in 15

JAN 80).

This type of field definition is called a relative field definition.

GIPSY provides a mechanism for extending the data record at execution time in
order to move data around, perform computations, etc., and to put data in the
extended portion of the data record. To accomplish this, there is a special
case when an "*" may be used (instead of an integer number) for the <starting
position>. This option may be used only to define fields whose data will be
loaded by a FIELD TABLE. In this case the "*" is defined as the next double
word position after the end of the highest (rightmost) currently defined data

3-34

location. For example, if we build on the above definitions of the DATE field

with:

WORK-AREA * A109.

the starting position of work area would be position (column) 37 (i.e., the

next multiple of 12 plus 1). If relative field definitions are used, the user

need not be concerned with actual start positions. The use of this area will

be described in detail in the t'IELD TABLE discussion on modifying user file

data.

The <commands to insert new field definitions> is in the form:

INSERT BEFORE <old fieldname>.IAFTER

<field name> <starting position>, <type and length> }
<defined fieldname>, [<type and length>]

<null line>

The INSERT function is identical to the ADD function except that the

definitions are inserted before or after a previously entered field
definition, as specified.

The commands to delete old field definitions is in the form:

DELETE <fieldname> [THROUGH <fieldname n>].

Field definitions can be deleted only by specifically identifying a single

fieldname or by specifying a range of fieldnames by adding the THROUGH option.

If the THROUGH option is used any definitions appearing in the FDT at the time

of the delete may be used to define the limits of the deletion. If a field
has already been referenced outside of the FDT block structure, that field

definition cannot be deleted. (The column headed "QDT POSITION" on a LIST is

nonblank if the field has been referenced).

The <command to list field definitions> is in the form:

LIST [<fieldname>]

If the <fieldname> is not specified, a formatted list of all entries currently

defined in the FDT will be displayed. If <fieldname> is specified only the

named entry is listed. The interrupt command //FDT and its permutations may
be used to augment the reviewing of the FDT.

3-35

The commands to sort the FDT provide the capability to rearrange the FDT,
based upon either the alphabetical order of the fieldname or the defined
starting position for the data.

The syntax for these functions is:

S FIELD 1
SORT STPOS

S J
SORT FIELD will rearrange the field definitions such that the fieldnames
appear in ascending alphabetical sequence. 3ORT STPOS will rearrange the
field definitions such that they appear according to the ascending value of
the starting position.

The BUILD FDT function may be used to create a new FDT or to augment an old
one. If an FDT statement has been previously entered, or if an FDT has been
defined by a previous BUILD FDT block structure within the current session,
subsequent BUILD FDT functions will operate on the defined FDT entries as well
as allowing the addition of new ones.

The BUILD FDT block structure must be terminated by an END statement. Once
out of the block, the GIPSY SAVE command may be used to save the FDT on disk
for later recall. Of course, it may not be necessary to save the FDT since
all of the BUILD FDT commands are saved on the PCS file, just as all other
GIPSY statements are saved. This effectively allows a permanent in-line FDT.
Neither the use nor definition of a field within the BUILD FDT block structure
constitutes a field reference to cause it to be included in the QDF.

3.2.5.3 Describing the Index File. The index file is described using the
same tools used to describe the data file. The BUILD FDT block structure
described in section 3.2.5.2 is used as described except that the ADD
statement must be:

ADD TO INDEX.

This feature is only valid for ISP files. All other features and requirements
are as described in the preceding section.

The index descriptors may be included with the data file descriptors, or they
may be separately specified. Since the index descriptions can have the same
fieldname as the file descriptors, the latter is recommended for clarity. The
index fieldname can be used only in statements which reference the index. The
converse is also true.

The following example shows an index description:

>BUILD FDT.
>ADD TO INDEX.
ENTER NEW FIELD OR CARRIAGE RETURN TO TERMINATE

3-36 CH- 1

> LOCATION I P.12.
ENTER NEW FIELD OR CARRIAGE RETURN TO TERMINATE

> MISSION 15 A5.
ENTER NEW FIELD OR CARRIAGE RETURN TO TERMINATE
>END.
>BUILD FDT.

>ADD.
ENTER NEW FIELD OR CARRIAGE RETURN TO TERMINATE
> DATE 25 16.
ENTER NEW FIELD OR CARRIAGE RETURN TO TERMINATE
> MONTH 27 12.
ENTER NEW FIELD OR CARRIAGE RETURN TO TERMINATE
>END.
>RETRIEVE FROM INDEX IF LOCATION EQ ENGLAND.

>//FDT

FIELD POSITION LENGTH TYPE DECPT QDT POSITION
LOCATION 1 12 A <INDEX>
MISSION 15 5 A <INDEX>
DATE 25 6 I
MONTH 27 2 I

3.2.5.4 Describing GLOBAL and QUALIFY Records. Unlike the FILE AND INDEX

records, GLOBAL and QUALIFY records do not describe a FILE. These records
represent internal working storage. The ADD statement must be:

ADD TO QUALIFY

The fields are defined as discussed in section 3.2.5.2 except the <starting
position> must be an asterisk, "*", or previously defined field name of the
same type.

3.2.6 Conditional Expressions. Many GIPSY statements or structures are set
up to perform the required functions only when some set of conditions is
satisfied.

For example, you might want to retrieve a record only if it is an Army record.
The GIPSY language element for stating that criteria is called a conditional
expression. Unfortunately, conditional expressions tend to be rather
technical and at times programmerish. This is necessary because of the
precision of the specifications required. A conditional expression is
composed of on- or more logical comparisons joined together by the connectors
AND and/or OR, and possible parentheses to control the order and grouping of
comparisons. Each logical comparison has one of the following forms:

(1) <fieldname> <relational operator> <value> [,<value> I
(only for EQ, NE, BT)

(2) <fieldname> <relational operator> & <fieldname>

3-37 CH-l

(3) <logical field> up to 6 bits in one character (L.O-L.5)

(4) <fieldname> CHANGES compares present to previous

(5) <fieldname> COMPLETE compares present to next

(6) <coord fieldname> WITHIN <coord>, <coord> [, <coord>, <coord>

(7) <logic names>

(8) (<logical comparison> ORD <logical comparison> AND logic ' comparison>)

AND
(9) <logical comparison> OR < logical comparison>...

(10) NOT <logical comparison>

Each of the above must be considered to be a Boolean operation. The condition

is satisfied when the answer to the comparison is true; otherwise, it is

false.
In each of the cases above, <fieldname> is any valid field reference defined

in the currently specified FDT. In case (1) above, multiple comparison values

(i.e., [, value 1) are permitted only in comparisons for equal, not
equal, and between. Consistent with the foregoing limitation, the <relational

operator> may be any of the following:

Relational _

Operator Meaning

EQ is equal to
NE is not equal to
BT between

LT is less than
GT is greater than

LE is less than or equal to (inclusive)
GE is greater than or equal to (inclusive)

- is equal to

< is less than
> is greater than

In case (1) the contents of the data in the record identified by <fieldname>
will be compared against the literal value using the relational operator to

determine whether the comparison is true or false. The literal-value may be

of any valid data type. It will be converted to the type associated with the

<fieldname> for comparison. This literal must be enclosed in quotes if it

contains any special characters (a decimal point in a floating point number is

not a special character); it may be enclosed in quotes for any alphanumeric
comparison, if desired. Any item enclosed in quotes will always be treated as

alphanumeric, even if it is a number. If the literal value does not agree in

length with an alphanumeric data field, the value will be padded on the right

3-38

with blanks if too short, or truncated on the right if too long. The length
is unimportant in numeric (I or F type) comparisons.

Case (2) is identical to case (1) except that the parameter on the right of
the relational operator will be taker. from the data field identified by
<fieldname>. The "&" alerts GIPSY that the string of characters identified by
the second <fieldname> is a data field reference rather than a literal value.

In case (3) <logical field> refers to any field in the FDT with a type of L.
This is a 1-bit data reference that is considered to be a completed logical
comparison. A value of true or false is assigned dependent upon the contents
of the defined bit. A bit value of zero in the data indicates a false
condition; a bit value of one indicates a true condition.

Case (4) compares the current value of the data identified by <fieldname> with
its previous value. The condition is true if the current field value is
different from the previous field value; otherwise it is false, i.e., the
field value does not change. The field changes for the first record by
definition.

Case (5) is somewhat similar to case (4). It compares the current value of
the data identified by <fieldname> with what its value will be in the next
record. The condition is true when the next value of the field will be
different from the current one, i.e., a data record grouping is complete
because the next one will start a new group. By definition, the record
grouping is always complete for the last record. This conditional expression.is not valid in the BUILD TABULAR REPORT block structure.
Case (6) effectively performs an area search. Each <coord> must be a
geographic coordinate. These coordinates must occur in pairs representing a
geographic rectangle. The first coordinate of the pair represents the lower
left corner of the geographic rectangle and the second represents the upper
right corner. The WITHIN operator causes GIPSY to determine if the data file
coordinate defined by the <coord fieldname> is within the rectangular area
defined by the coordinate pair. The <coord> pair may be repeated as often as
desired to describe an area. If multiple pairs are supplied, GIPSY will
repeat the test for each coordinate pair; the condition is true if the data
falls inside any of the rectangles. The rectangles may overlap without
redundant selection of data. This capability provides a very fast random area
search capability. The searching is done by simple comparisons rather than by
time consuming complicated mathematical computations.

Case (7) uses a name assigned to a conditional expression in a LOGIC TABLE as
the logical comparison. It has a true/false value based upon the evaluation
of the conditions defined for that item in the LOGIC TABLE (see section 3.2.7
for details on the LOGIC TABLE).

Cases (8) and (9) define <logical comparisons> recursively. They emphasize
that one or more <logical comparisons> can be collected and connected together
(using parentheses and connectors) and treated as a single logical comparison

3-39

having a true/false value. This definition is deliberately recursive. Any of
the preceding cases may be substituted in case (8) for <logical comparison>
including case (8) and (9) themselves. Eventually of course, each <logical
comparison> has to be replaced by one of the <logical comparisons> in cases
(1) through (7). Be sure to take note that even the complex string of
<logical comparisons> derived by repeated expansions into case (8) can be
treated as a <logical comparison> with a single true/false result.

The last sentence above is particularly important when we consider case (10).
Case (10) says that the inverse of that comparison results by appending a
unary NOT operator. The NOT operator applies to the <logical comparison>. It
cannot be used in front of the <relational operator> or the <value>. It may
read a little strange, but remember, the NOT reverses the result of an entire
logical comparison or string of comparisons. For example:

MONTH EQ FEB AND DAY EQ 29

will select leap year day, while

NOT (MONTH EQ FEB AND DAY EQ 29)

will select everything except leap year day. However,

NOT MONTH EQ FEB AND DAY EQ 29

will select only the 29th of every month except FEB. Finally,

MONTH NOT EQ FEB AND DAY NOT EQ 29

will result in syntax errors because the NOT operator can modify only the
logical comparison, not the relational operator.

When all the pieces of <logical comparisons> are in place, it is called a
<conditional expression>. Throughout this manual the term <conditional
expression> will refer to that definition provided here.

To avoid ambiguity, let us call two or more logical comparisons connected by
AND or OR, a phrase. When compounding logical comparisons into a phrase, care
should be taken in establishing the precedence of evaluation. All logical
comparisons connected by an AND must be true for the phrase to be true; when
any logical comparison connected by OR is true, the phrase is true.

Parentheses should be used to collect OR connected phrases or logical
expressions into a single truth value if the OR connected phrase is not
all-inclusive. Perhaps an example will help to clarify this. The expression:

DAY-OF-WEEK EQ MONDAY AND DAY LT 10 OR DAY CT 20

will qualify all Mondays in the first 10 days of the month plus all days of
the week for dates greater than 20. While:

3-40

DAY-OF-WEEK - MONDAY AND (DAY LT 10 OR DAY GT 20)

0will only select Mondays before the 10th and after the 20th. What has

happened in the latter case is that the DAY phrase was resolved to a single

truth value prior to being connected by the preceding AND. To state it

another way, AND connects the logical comparisons on each side of it; OR
allows the logical expression to stand alone; and, the parentheses allow a

series of phrases to be collected so that everything in the parentheses is

treated as a single phrase. Parenthetical expressioits may be nested within

parenthetical expressions to an unlimited depth.

The syntax of the items on the right hand side of the between relational

operator (BT) is slightly different from the others. BT accepts a pair of

comparands separated by a slash (/). The comparison is inclusive of the

values on the end of the range.

If a user wanted to select all data for the 1st through the 5th, the 13th

through the 18th, and the 21st through the 30th of December, the conditional

expression would be:

MONTH EQ "DEC" AND DAY BT 01/05, 13/18, 21/30

This of course assumes that MONTH and DAY ara fields in the FDT currently
loaded by GIPSY.

OR is normally assumed for comparands in a list on the right-hand side of a

logical comparison. The conditional expression above will be interpreted as:

MONTH EQ DEC AND (DAY BT 01/05 OR DAY BT 13/18 OR DAY BT 21/30)

Take special note of the phrases within parentheses. Note that you cannot say

DAY BT 01/05 OR 13/18 OR 21/30

A comma must be used to separate the items in any list, or the entire logical

comparison must be specified.

The single exception to assuming OR as the list connector is operator NE. The

implied connector in this case is AND because of the implied inversion of the

equal condition for NE.

3.2.7 Predefining Conditional Expressions. Many GIPSY statements have an

option for appending a conditional expression to the statement to control the

data passed to it, or to control when the statement carries out the designated

function. Some user applications have complex conditions in which it is

desirable to simplify the user interface by predefining those complex

conditionals and assigning a clearly understood name to them. To address

requirements such as these an optional block structure called the LOGIC TABLE

is provided. The LOGIC TABLE allows the creation of any number of conditional

expressions as defined in section 3.2.6, and the assignment of a 1- to

12-character name. The syntax for this block structure is:

03-41

LOGIC TABLE.
<logic name 1> : <conditional expression 1>.

<logic name 2> <conditional expression 2>.

<logic name n> <conditional expression n>.

END.

The user supplied names for <logic name 1>, <logic name 2>, etc. should be
meaningful names. The first character of the name must be alphabetic; it can

contain no special characters and it. length cannot exceed 12 characters. The

colon is the assignment operator for attaching a name to the conditional

expression on the right. Names defined in the logic table may be used in lieu
of a conditional expression in any statement which allows a conditional
exp:ession, including the logic table itself. Once it has been defined, a

logic name may also be treated as a logical comparison (see section 3.2.6) and

thus may be joined to any other logical comparison via an AND or an OR

connector even in the logic table definitions.

The logic table itself does not do anything. It is a passive tool for
providing definitions which become active only as part of some other function.

GIPSY does allow the user to sort the retrieved data. See section 4.2 for a
discussion of the SORT capability.

Th' following example illustrates the definition of logic names in the LOGIC

TABLE:

LOGIC TABLE.
CARRIERS: ANAME (1/2) EQ CV.
CRUISERS: ANAME (1/2) EQ CG.
SUBS: ANAME (1) EQ "S".
COMBAT-SHIPS: CARRIERS OR CRUISERS OR SUBS OR ANAME (1) EQ D, F, L.
COMBAT6FLEET: COMBAT-SHIPS AND FLEET EQ 6.
NONCOMBT6FLT: FLEET EQ 6 AND NOT COMBAT-SHIPS.
NONCOMBT7FLT: (FLEET EQ 7 OR TASK EQ "109") AND NOT COMBAT-SHIPS.

END.

We will use this LOGIC TABLE in future examples where conditional expressions
are allowed. These particular logic names apply only to the data file
conditional expressions. This example assumes that fieldnames ANAME, FLEET,
and TASK have been previously defined in the current FDT.

Up to this point we have described the LOGIC TABLE to be used with the data
file. There exists an option on the LOGIC TABLE statement for the index file.
In this case the syntax is:

3-42

LOGIC TABLE FOR INDEX.
<logic name> : <conditional expression>.

END.

All the syntax and semantics described earlier apply here. However, only
fieldnames belonging to the index file description may be used in the
conditional expression. These logic names can be used only in statements or

block strvt..ures operating on the index.

3.2.8 Data Retrieval. GIPSY has a powerful data retrieval capability for
accessing the user's data file and pulling out the desired data. Graphic
outputs and related statistical tabular reports are the targeted outputs.
However, GIPSY is used frequently as a data query system in order to produce
formatted reports or data base subsets. It is even effective against large
hierarchical data structures with variable format record types.

The syntax for the data retrieval statements is:

REREFFROM FILE I {IF <composite expression> ~
RETRE'~F { FROM INDEX) {ALLJ

*where <composite expression> is

[<conditional expression>
<type expression>
<relative expression>

<composite expression> AND <composite expression>

[<record type> CKANGESwhere <yeepeso>is ?<record-type>CIAGS >

<<record-type> CdMPLETESJ

[GT1
GE

where <relative_expression> is RECNBR EQ <integer value>

LT
LE
BT

3-43 CH-I

The RETRIEVE statement is an optional statement. If one is not specified, all

records in the file will be candidates for inclusion in the reports or graphic

displays to be produced. The statement "RETRIEVE ALL." will also retrieve all

records.

The data retrieval criteria may be composed of one of the two RETRIEVE

statements: RETRIEVE FROM FILE or RETRIEVE FROM INDEX. If the FROM clause is

not specified, FROM FILE is assumed. Use the FROM INDEX only if a GIPSY index

file and the FDT for the index have been defined (for GFRC ISP files) or the

indexes from the user's file have been correctly referenced in the file's FDT
(for UFAS indexed or relative files and I-D-S/II indexed or integrated files).

See sections 3.2.4.2 and 3.2.5.3 for the details and restrictions on building

GIPSY indexes. For I-D-S/II integrated files if using FROM INDEX you m'Ist use

the key specified in the index. This is obtained from the GET IDSII STK.ICTURE

statement. It will also be displayed at the end of the //IDSII statement and

the //FDT statement. Typically, only users with very large files need be

concerned about RETRIEVE FROM INDEX. The majority of applications simply use

the data file RETRIEVE statement.

RETRIEVE FROM FILE IF or RETRIEVE IF causes GIPSY to test each record in the
file against the specified <composite expression>. The <composite expression>

may be composed of a <conditional expression>, a <type expression>, a

<relative expression>, or two <composite expressions> joined by AND or OR. The
syntax and semantics of a <conditional expression> are discussed in section

3.2.6.

A <type expression> is valid only for the I-D-S/II integrated file type and is

made up of a <recordtype> identifier, <record_type> identifier CHANGES, or
<recordtype> identifier COMPLETES. The <record type> identifier is a unique
four digit number assigned to each record type. It specifies the individual

record types of the I-D-S/II integrated data file, which may be obtained by
the GET IDSII STRUCTURE command and displayed by the //IDSII STRUCTURE

interrupt command. When a <recordtype> identifier is used alone, it acts as

a logical field that is true when the current record is of that type. The

<record-type> identifier CHANGES expression is true when the current record is
of that type and the previous record is not of that type. The <recordtype>

identifier COMPLETES expression is true when the current record is of that

type and the next record is not of that type.

A <relative expression> is valid only as retrieval criteria for the UFAS

Relative file type. It consists of a RECNBR, a relational operator, and an

integer value. RECNBR is a reserved word that is used only in a <relative

expression> to identify a specific record. It may not be used as a data

value. The valid relational operators are GT, GE, EQ, LT, LE, and BT. The

operator BT requires a pair of integer values separated by a comma. The

operator EQ allows comparison against a list of values separated by commas.

When the <composite expression> is satisfied (is true), that data record is
retrieved for further processing; all data fields which are functionally
referenced prior to the run are copied to the QDF to be used later in the

3-43.1 CH- 1

report or graphic display. A field is functionally referenced only if it

appears on a statement which participates in the report or display building

function. The command RETRIEVE ALL will cause every record be retrieved.

3-43.2 CH- 1

A simple retrieval statement:

RETRIEVE IF FLEET EQ 6.

might be used to retrieve all 6th Fleet data. Perhaps this statement

retrieved too much data to derive the answer you are looking for, so let's

make it more restrictive, say to select only combat ships in the 6th Fleet.

That is,

RETRIEVE IF FLEET-6 AND (ANAME (1/2) EQ CV OR
ANAME (1/2) EQ CG OR ANAME (1) EQ S, D, F, L).

Note if the logic table in section 3.2.7 were available, this statemenu could

have been coded RETRIEVE IF COMBAT6FLEET.

RETRIEVE FROM INDEX defines a test that is applied against the index field to
determine which records in the data file are to be read. This function does

not actually retrieve any data from the index. It uses the index in a manner

similar to the index of a book to determine what part of the file will be

considered. Effectively, GIPSY considers data records to exist only when the

index conditional expression is satisfied. Therefore, RETRIEVE FROM INDEX

does not see a data record until an index condition is satisfied. Without a

RETRIEVE FROM INDEX, GIPSY must look at every record in the data base.

The bottom line is that a retrieval from a large indexed file which uses the

GIPSY indexing capabilities is orders of magnitude faster than a plain

retrieval.

The data qualification capability provided by the RETRIEVE statement may be

augmented with the FIELD TABLE capability discussed in section 3.2.11. That

capability allows data to be rearranged or supplemented after the data is read

from file but before it is tested by the RETRIEVE mechanism. This data may be

retrieved based on data modification or data not really in the data base.

Any field referenced on a RETRIEVE statement causes these fields to be

included in the QDF and QDT. This may be inhibited by issuing the statement

SET AUTO INCLUDE OFF.

The data selection process is initiated by the command:

RUN.

Once the RUN command has been entered, GIPSY begins retrieving records from

the users data file, field table moves are performed, and retrieval criteria

is checked. If a record meets the retrieval criteria, the fields flagged for

inclusion to the QDT are written out to the QDF. Following data selection,

GIPSY places the user either in the statistical reports module (if BUILD

3-44 0

TABULAR REPORT was specified) or in the geographic module. Alternately, the

user can control which module GIPSY ends up in by the command:

DIS
PLARUN TO GEOMO'

GDR

You may interrupt the data retrieval process at any time by depressing the

break key (or entering the appropriate device break function). GIPSY will

stop reading the file and display its current file processing status (i.e.,
number, number retrieved, etc.) then allow you to terminate, continue, or to
ignore the unread portion of the file and build the tabular report with only

the data already retrieved. In the following example, the break key was
depressed shortly after the "DATA Selection started" message. (Note the

times.)

DATA Selection started at 1757 03.

DATA Selection halted by BREAK KEY at 1757 09:

RECORDS READ RECORDS QUALIFIED RECORDS IN ERROR

1343 53 0

Enter "S" to process subset qualified above,

or "C" to continue qualifying records,
or "M" to continue with monitoring,

or "T" to terminate run. C

DATA Selection ended at 1758 05:

RECORDS READ RECORDS QUALIFIED RECORDS IN ERROR

2272 175 0

Data selection monitoring can also be turned on automatically with the SET

MONITOR command:

SET MONITOR {ON}
3.2.9 Arithmetic Expressions. Arithmetic expressions occur in many places in
the GIPSY language. For this reason let us provide a basic description of an

arithmetic expression here. When the term arithmetic expression is used in

the remainder of this document it will have the syntax and semantics (meaning)

described here. Arithmetic expression is any valid equation specifying an

arithmetic or algebraic computation involving data fields from the file and

arithmetic operators "*", "/", "+", "-", "(", and ")". The standard

precedence of operations, including the use of parentheses to alter the

precedence of calculations, is observed (i.e., parenthetical expressions are

evaluated first, followed by expressions connected by * or /, then expressions

connected by + or -).

3.2.10 Predefining Arithmetic Expressions. Arithmetic expressions may be

predefined, given a name, and recalled later by referencing the name assigned

3-45

to it. These names are defined in a block structure called a math table. The
math table is initiated by the statement MATH TABLE, followed by math names
with associated arithmetic expressions and terminated with an END statement.

Specifically,

MATH TABLE.
<math name 1> - <arithmetic expression 1>
<math name 2> - <arithmetic expression 2>

<math name n> - <arithmetic expression n>
END.

The <math names> must be unique within all user defined names (including field
names) and are limited to 12 cl-aracters in length. These names may be used in
subsequent statements to obtain the specified results.

For example:

MATH TABLE.
TOTAL-ROUNDS-RIFLE-CRATES*332+COLT-CRATES*429.
COLT-ROUNDS-COLT-CRATES*429.

RIFLE-ROUNDS-RIFLE-CRATES*332.
FIRE-POWER-(RIFLE-CRATES*332+COLT-CRATES*429)*RELIABILITY.

END.

The math table does for arithmetic expressions what the logic table does for
conditional expressions. The math table itself is passive. Its presence does
not affect processing. It is simply a means of avoiding redundant entry of an
arithmetic expression.

3.2.11 Data Modifications. Most user data files were designed and
implemented with no objectives relating to interactive graphic display. Most
certainly not GIPSY graphic display. Consequently, occasions arise when data
needed for effective graphic display or effective GIPSY usage does not exist
in the data file or is not in a proper format for interactive graphic usage.
GIPSY provides a mechanism to modify existing data fields and create new field
and load data into them in an in-line extension of the data record. The new
field may be created with the BUILD FDT block structure. Data is inserted
into the new field or modified in an existing field via a mechanism called the
field table. The field table is a block structure which allows data to be
moved into a field, arithmetic computations to be done, data to be
concatenated with other data, and conditional expressions to be used to
control its processing.

The field table is primarily targeted toward the application programmer as
opposed to the user-analyst. The user analyst who is unfamiliar with computer
programming concepts can skip on to the next numbered section.

3-46

The syntax of the field table is:

FIELD TABLE [FOR <for clause>] WHEN <composite expression>]

FILE
where <for clause> is INITIALJ

FINAL

where <composite expression> ist<conditional expres,%on>
<type expression>
<relative expression>
<composite expression> <composite expressio

[<record-type>1
where <type expression> is <record-type> CHANGES

<record-type> COMPLETES

GT
GE

where <reletiveexpression> is RECNBR EQ <integer value>

LT
LE
BT

<fieldname> - <data to be assigned to fieldname> [IF <conditional
expression>].

<fieldname2> - <data to be assigned to fieldname2> [IF <conditional
expression>].

END.

The field table consists of the FIELD TABLE statement, one or more statements
to assign values to a field, and an END statement to close out the block
structure. Every record in the data file is processed against the field table
prior to being made available for the RETRIEVE FROM FILE statement. (This
means that the RETRIEVE statement can reference data based on the result of
field table operations.) The WHEN <composite expression> clause controls
overall use of the field table. A <composite expression> may be composed of a
<conditional expression>, a <type expression>, a <relative expression>, or two
<composite expressions> joined by AND or OR. The <conditional expression>

3-47 CH-I

throughout the field table has the standard definition as provided in

subparagraph 3.2.6.

A <type expression> is valid only for the I-D-S/II integrated file type and is
made up of a <recordtype> identifier, <record type> identifier CHANGES, or
<record-type> identifier COMPLETES. The <recordtype> identifier is a unique
four digit number assigned to each record type. It specifies the individual
record types of the I-D-S/II integrated data file, which may be obtained by
the GET IDSII STRUCTURE command and displayed by the //IDSII STRUCTURE
interrupt command. When a <record type> identifier is used alone, it acts as
a logical field that is true when the current record is of that type. The
<record-type> identifier CHANGES expression is true when the current record is
of that type and the previous record is not of that type. The <record type>
identifier COMPLETES expression is true when the current record is of that
type and the next record is not of that type.

A <relative_expression> is valid only as retrieval criteria for the UFAS
Relative file type. It consists of a RECNBR, a relational operator, and an
integer value. RECNBR is a reserved word that is used only in a
<relative expression> to identify a specific record. It may not be used as a
data value. The valid relational operators are GT, GE, EQ, LT, LE, and BT.
The operator BT requires a pair of integer values separated by a comma. The
operator EQ allows comparison against a list of values separated by commas.

A data record will be processed against the body of the field table only if
that record first satisfies the WHEN criteria. If the WHEN clause is not

specified all records will be processed against the body of the field table.

The <for clause> is optional and may consist of the key word FOR followed by
FILE, INITIAL, or FINAL. The FOR FILE clause is the default and is therefore
not essential to the syntax. The FOR FILE clause indicates that the field
table should be processed against all the records in the file. The FOR
INITIAL clause causes the field table to be processed only for the first
record during data retrieval. The FOR FINAL clause indicates that only the
last record in the file should be included in the field table execution.

The body of the field table consists of one or more conditional assignment
statements. For each assignment statement the <fieldname> on the left-side of
the equal sign (-) designates the field to receive the value produced on the
right by the data to be assigned to <fieldname>. This will be done if and
only if the associated IF <conditional expression> is true.

Values assigned to fields via field table operations remain in the field until

the contents of that field is modified by a new data record on another field
table operation. The field table may be used to move data to the extended
record area where it is only modified by field table operations. This allows
data to be collected across any number of records for use as a single record.

3-47.1 CH-I

The <data to be assigned to fieldname> may take any of the following forms:

(1) <fieldname>
(2) (<arithmetic expression>)
(3) <literal value>
(4) <math name>

(5) {<fieldname> f<fieldname> 5<fieldnanie>
<literal value> J .<literal value> 1literal value>J

(6) TRUE
(7) FALSE
(8) $ISPPTR
(9) $DATE
(10) $TIME

3-47.2 CI- 1

The first three cases above are self-explanatory. Note that arithmetic

expressions must be enclosed in parenthesis, while literal expressions are

enclosed in quotes.

In the fourth case <math name> is any previously defined Math Table entry.

In the fifth case the colon (:) serves as a concatenation operator.

Concatenation is the process of connecting two or more items. For example,

assume that the field DAYS-ELAPSED contains the value 2.

Then the field table:

FIELD TABLE.

WHICH-DAY - "THE " : DAYS-ELAPSED "ND DAY".

WHICH-DAY - "THE " ; DAYS-ELAPSED : "RD DAY"; IF DAYS-ELAPSED EQ 3.

END.

would assign the string "THE 2ND DAY" to be field WHICH-DAY. The

concatenation operator is also very useful in pulling together disjointed data

from two or more fields into a single field. Let us assume that a data field,
POINT, contains coordinates in the form 895959NXXXXXI793939E. These

coordinates can be put in the standard GIPSY coordinate form with the field

table entry:

GOOD-COORD-POINT (1/7) : POINT (13/20); IF POINT (8/12)-"XXXXX".

The resulting value in GOOD-COORD would be 895959NI793939E whenever POINT

contained XXXXX.

Cases 6 and 7 define values which may be assigned to logical fields. TRUE and

FALSE are bit variables which may be used as a complete phrase in a
conditional expression.

Case 8 is a special case. The pseudo field $ISPPTR contains the ISP record

pointer value needed to build an index file. This pseudo field can only

appear in a field table on the right of the equal sign. This case is

appropriate only when the users data file is an ISP file.

Cases 9 and 10 allow the user to store computer generated date and time into

the specified field. The $DATE option supplies a 6 character date of the

format MMDDYY, whereas the $TIME option provides a 4 character military time

in the format HHMM.

The real utility of the field table is realized when the fields referenced are

in the extended record area. The contents of the extended record area are

altered only when the user specified field table assignments change them.

Therefore, the extended record can be used to hold values until it is

desirable to release that information with the data record.

3-48 0

The user may use any number of field tables. Every data record will be
processed against each field table subject to the conditional expressions on
the FIELD TABLE statement. Further discussions of the field table are
presented in section 4.

3.2.11.1 User Subroutine Data Modifications. GIPSY data can also be modified
by passing it to user built subroutines (see section 3.2.3.20). This is
accomplished in the Field Table block structure by either field table
assignments or stand alone calls.

The syntax for these statements is:

FIELD TABLE.
<fieldname> = $ <subroutine name> [(<argl>, <arg2> <arg n>)].
$ <stand alone subroutine name> [(<argl>, <arg2> <arg n>)].

END.

The subroutine name is proceeded by a dollar sign "$". The subroutine
arguments <argl> thru <arg n> are field names, defined on the FDT, which
either pass or receive data from the subroutine. The field table assignments
$ISPPTR, $DATE, and $TIME (see section 3.2.11) are in fact subroutines
contained in the default subroutine library.

3.2.12. Defining and Executing a GIPSY Process What is a GIPSY process? A
GIPSY process is any subset of GIPSY statements which can be grouped together
to perform a particular function, generate a display, or simply display notes
or comments to the user. The process is identified by an alphanumeric name
which represents the group of statements. Two GIPSY statements are provided
for defining and executing a GIPSY process. These are the DEFINE PROCESS and
DO statements.

The DEFINE PROCESS statement identifies the beginning of the subset of GIPSY
statements which make up the process and also provides for naming the process.
The syntax for the DEFINE PROCESS is:

DEFINE PROCESS <process name>.

The DEFINE PROCESS statement is then followed by any number of GIPSY
statements. The process is terminated by the command END PROCESS <process
name>, or by entering a null response. For example, to define a process named
"MAP" you could enter the following statement:

DEFINE PROCESS MAP
MAP FILE WORLD2.
SET GRID ON.
DISPLAY MAP WINDOW CONTAINING USA.
END PROCESS MAP.

3-49

The statements within the process named "MAP" are not immediately executed.
They are essentially set aside as a canned procedure to be executed at some
later time.

To execute the process named "MAP" requires a DO command to be issued. The
syntax of the DO statement is:

DO <process name> .

When the DO command is issued, the named process on the DO statement will be
invoked and the statements within the named process will be immediately
executed. For example:

DO MAP.

will cause the MAP, SET and DISPLAY statements within the process named "MAP"
to be executed and a display to be generated. After all the statements within
the process are executed, control will be returned to the user for the next
GIPSY command. If the DO command was issued from within a PCS, control will
return to the next statement within the PCS.

The following examples are given to illustrate how one might use the define
process:

DEFINE PROCESS REPORT.
FILE 8371DPXO/GIPSY/DATA/..TSTFIL
FDT 8371DPXO/GIPSY/DATA/..TSTFDT
BUILD TABULAR REPORT.
ROWS.

USE UNITTYPE.
COLS.
USE READINESS.

END.
END PROCESS REPORT.

DEFINE PROCESS ARMY-RET.
RETRIEVE IF UNITTYPE EQ ARMY.
TITLE (SIZE LARGE) "ARMY READINESS".

END PROCESS ARMY-RET.

DEFINE PROCESS NAVY-RET.
RETRIEVE IF UNITTYPE EQ NAVY.
TITLE (SIZE LARGE) "NAVY READINESS".

END PROCESS NAVY-RET.

DEFINE PROCESS ALL.
RETRIEVE IF UNITTYPE EQ ARMY, NAVY.
TITLE (SIZE LARGE) "READINESS STATUS".

END PROCESS ALL.

3-50

DEFINE PROCESS MENU.
SET SIZE JUMBO.

//NOTE C9999 STANDARD REPORT CAPABILITY
//NOTE
//NOTE IF YOU WANT THE ARMY REPORT ENTER "DO ARMY."
//NOTE
//NOTE IF YOU WANT THE NAVY REPORT ENTER "DO NAVY."
//NOTE
//NOTE IF YOU WANT BOTH REPORTS ENTER "DO BOTH."
END PROCESS MENU.

DEFINE PROCESS ARMY.
DO REPORT.
DO ARMY-RET.
RUN.
DISPLAY REPORT.

END PROCESS ARMY.

DEFINE PROCESS NAVY.
DO REPORT.
DO NAVY-RET.
RUN.
DISPLAY REPORT.

END PROCESS NAVY.

DEFINE PROCESS BOTH.
DO REPORT.
DO ALL.
RUN.
DISPLAY REPORT.

END PROCESS BOTH.

Above we have defined 8 processes named:

REPORT
ARMY-RET
NAVY-RET
ALL
MENU
ARMY
NAVY
BOTH

Each process has a predefined function. The statement may be entered either
interactively or from a PCS file. Remember, none of the above statements have
actually been executed up to this point. The following examples illustrate
the use of the DEFINE PROCESS capability:

GIPSY PCS 8371DPXO/GIPSY/PCS/PCS-DEF

3-51

GIPSY Release 5.1 (1 November 89) **PRODUCTION SYSTEM**
For any problems or questions about this release contact the GIPSY SUPPORT
OFFICE AT (703) 695-3519, A/V 225-3519.

DEFINE PROCESS REPORT.
FILE 837IDPXO/GIPSY/DATA/..TSTFIL
FDT 8371DPX0/GIPSY/DATA/..TSTFDT
BUILD TABULAR REPORT.
ROWS.
USE UNITTYPE.

COLS.
USE READINESS.

END.
END PROCESS REPORT.

DEFINE PROCESS ARMY-RET.
RETRIEVE IF UNITTYPE EQ ARMY.
TITLE (SIZE LARGE) "ARMY READINESS".

END PROCESS ARMY-RET.

DEFINE PROCESS NAVY-RET.
RETRIEVE IF UNITTYPE EQ NAVY.
TITLE (SIZE LARGE) "NAVY READINESS".

END PROCESS NAVY-RET.

DEFINE PROCESS ALL.
RETRIEVE IF UNITTYPE EQ ARMY, NAVY.
TITLE (SIZE LARGE) "READINESS STATUS".

END PROCESS ALL.

DEFINE PROCESS MENU.
SET SIZE JUMBO.

//NOTE C9999 STANDARD REPORT CAPABILITY
//NOTE
//NOTE IF YOU WANT THE ARMY REPORT ENTER "DO ARMY."
//NOTE
//NOTE IF YOU WANT THE NAVY REPORT ENTER "DO NAVY."
I/NOTE
//NOTE IF YOU WANT BOTH REPORTS ENTER "DO BOTH."
END PROCESS MENU.

DEFINE PROCESS ARMY.
DO REPORT.
DO ARMY-RET.
RUN.
DISPLAY REPORT.

END PROCESS ARMY.

DEFINE PROCESS NAVY.
DO REPORT.

3-52

DO NAVY-RET.
RUN.
DISPLAY REPORT.

END PROCESS NAVY.

DEFINE PROCESS BOTH.
DO REPORT.
DO ALL.
RUN.
DISPLAY REPORT.

END PROCESS BOTH.

DO MENU.

C9999 STANDARD REPORT CAPABILITY

IF YOU WANT THE ARMY REPORT ENTER "DO ARMY."

IF YOU WANT THE NAVY REPORT ENTER "DO NAVY."

IF YOU WANT BOTH REPORTS ENTER "DO BOTH."

>DO ARMY.

DATA Selection started at 1651 13
DATA Selection ended at 1651 14:

RECORDS RECORDS RECORDS
READ QUALIFIED IN ERROR
23 5 0

1 OF I
ARMY READINESS

1 2 3
ARMY 1 1 3

In the preceding example, a PCS file was used to set up the processes to be
executed and also invoke the process named "MENU". The statements which were
used to set up the processes were echoed back to the terminal for illustrative
purposes only. These statements can be made transparent to the user by having
a //ECHO OFF statement as the first statement in the PCS. The following
example illustrates this. NOTE: GIPSY would be invoked in the same manner as
the first example (i.e., GIPSY PCS <cfd>):

C9999 STANDARD REPORT CAPABILITY

IF YOU WANT THE ARMY REPORT ENTER "DO ARMY."

IF YOU WANT THE NAVY REPORT ENTER "DO NAVY."

3-53

IF YOU WANT BOTH REPORTS ENTER "DO BOTH."

>DO BOTH.

DATA Selection started at 1655 16

DATA Selection ended at 1655 17:
RECORDS RECORDS RECORDS
READ QUALIFIED IN ERROR

23 6 0

1 OF 1
READINESS STATUS

1 2 3 5
ARMY 1 1 3 0
NAVY 0 0 0 1

It should be noted that in the above examples, none of the statements within

the processes invoked by a DO statements were echoed back to the terminal
except for //NOTE statements within the process named "MENU". The echoing of

information is a function of the //NOTE command; it is not a function of a
process with the name of "MENU".

3.2.13. Executing GIPSY in the Batch Environment Occasions do arise when it
is advantageous to execute GIPSY as a batch job. For the most part, executing
GIPSY in the batch environment is used for large retrievals against a large
data base to build other permanent files (QDF, GDS, etc.) or to generate
standard, non-graphic reports (DISPLAY REPORT, PRINT) when the immediate time
sharing tesponse is not important but the extra resources available in batch
are.

3.2.13.1. GIPSY Batch JCL. The JCL necessary for a GIPSY batch job initiated
from time sharing is as follows:

CC

.1 .1

$ IDENT <ident field>
$ PROGRAM GIPSY, DUMP
$ LIMITS 05,16K,IOK
$ PRMFL **,R,R,LIBRARY/GIPSY/LOAD/BGIPSY
GIPSY
<GIPSY statements>

3-54

DONE

If the statements are set up with line numbers, the numbers must be stripped
when being RUN. The control cards needed to execute GIPSY in batch through a
card deck are as follows:

Cc
1 8 16

$ IDENT <ident field>
$ USERID <userid $ password>
$ PROGRAM GIPSY, DUMP
$ LIMITS 05,16K,10K
$ PRMFL **,R,R,LIBRARY/GIPSY/LOAD/BGIPSY

GIPSY
GIPSY statements

DONE
$ ENDJOB

The GIPSY command statement can have the same options that are available under
time sharing. These options are discussed in section 3.2.2.. 3.2.13.2. GIPSY Batch Limitations. Most of what can be done with GIPSY in
the time sharing environment can also be done in batch. The user who is
interested in using GIPSY batch should be specifically aware of those
statements and processes which are discussed below:

a. The TSS Command - The TSS command allows the user to temporarily
enter Honeywell's Time Sharing Subsystem from within GIPSY. This
capability simply cannot be done in the batch environment and the
job will abort if the TSS command is encountered during execution.

b. The DONE Command - In the batch environment, the DONE statement
must be the last GIPSY statement or the job will run until it
exceeds execution time limits.

c. The SAVE Command - The SAVE command is not functional in batch
GIPSY. The RESAVE command will operate the same as it does in time
sharing.

d. Graphic Output Commands - The graphic output commands (DISPLAY
MAP, DISPLAY BAR GRAPH, etc.) are executable in GIPSY batch. The
SET GRAPHICS OFF option is implemented automatically. Graphic
output can be sent to a file (see section 3.6, Pictare Processing).
The user can also process in batch up to the point where the graphic

3-55

output is displayed, and then resave the DAFC or GDS for future time
sharing processing.

e. Error Correction - Interactive error correction is not possible

in the batch environment. Results will be unpredictable if errors

are encountered.

3.2.14. Parameterized Input Another of the user-friendly features in GIPSY

is the ability to prompt the user for information whenever a pound sign is

encountered in a GIPSY statement. When a "#" is encountered in a statement,
such as "SET SIZE #.", GIPSY prompts the user with an equal sign "-" and the

user is then expected to complete the statement (i.e., enter SMALL, J, LARGE,
etc.). GIPSY then replaces the "#" with the input and continues processing.

If the statement containing the pound sign "#" is preceded with one or more

//NOTE commands, the user can be informed as to what information is desired.

If the pound sign is embedded in quotes, the "#'" will be treated as a literal.
Therefore, in the statement:

TITLE "#;#".

the pound sign (#) will be treated as a literal and the user will not be

prompted, whereas:

TITLE #;#.

will cause the user to be prompted for two lines of title.

3.3 Statistical Reports

GIPSY produces a variety of graphic reports used to portray statistical and

management data. It also produces an alphanumeric report which depicts this

in the form of rows and columns. The basis for all of these reports is the

Tabular Report which is described in the following discussion. Subsequent
sections will describe how this report is built, how to display the reports,

and finally how to enhance and modify them. The tabular report is the data

structure from which all statistical graphs are generated. It is a formatted,

matrix-oriented information structure with row headers down the left side,

column headers across the top, and a matrix cf data values in the body of the

report. The numbers in the body of the report, the matiix, are the result of

a cross tabulation of the occurrence of conditions defining the row and column

headers. These numbers represent either counts or calculated values summed

over each qualifying data record.

Any information summary occurring in the form of a matrix, or a cross
tabulation of data items, or data conditions is a candidate for a GIPSY

tabular report. Using GIPSY's tabular report capability is probably the most

efficient and effective way to build a matrix where the data is counted or

summed from a larger set of data records.

3-56

Before getting into the mechanics of building a tabular report, let us explain
the relationship between the tabular report and the graphic report. Reflect
back to your school days when you where given some equation of the form y-f(x)
and you were told to plot it. Let us suppose that the equation was y=2x+2.
What you did was to set up a table assign an x-value and calculate its
corresponding y. Associated pairs of x and y were produced until you were
done. Then the graph was drawn (figure 3-4) from the (x,y) value listed
below:

X Y
ROW 1 1 3
ROW 2 2 5
ROW 3 3 7
ROW 4 4 9
ROW 5 5 11
ROW 6 6 13
ROW 7 7 15
ROW 8 8 17
ROW 9 9 19
ROW 10 10 21

Now let us supppse that 3we had a4family of lines to plot. Assume that they
were yl-2x+l, y -3x+2, y -4x+3, y-x+4. We could set up four (x,y) value
lists, one for each equation.

Then we would proceed to assign a given x, and then calculate its
* corresponding y.

This process is repeated for each y, producing coordinates for four lines in
four value lists.

1 2 3 4

x y x y x y x y
1 3 1 5 1 7 1 5
2 5 2 8 2 11 2 6
3 7 3 11 3 15 3 7
4 9 4 14 4 19 4 8
5 11 5 17 5 23 5 9

But notice that there is a lot of redundant information. The same information
is more efficiently displayed as:

1 2 3 4

x y y y y
1 3 5 7 5
2 5 8 11 6
3 7 11 15 7
4 9 14 19 8
5 11 17 23 9

3-57

23

27-

is-

13-

3.

3-5

This form of the (x,y) vector list is readily recognizable as a tabular
1 2 3

report. This form makes it very convenient to display graphs of y , y 7 y
and y .

This is the concept GIPSY uses. In fact, this form together with
classifications and titles, comprises a report on the Graphic Data Set (GDS)
for management/statistical graphs.

The equation illustrated in the foregoing discussion limited the x values to
numbers which are assigned to variables in an equation. GIPSY does not have
this restriction since the tabular report is built from the user's data rather
than calculations using an equation.

Bargraphs, histograms, line graphs, point graphs, and step graphs, use either
the row or column headers as labels on the x-axis, and each separate item is
equally spaced along the x-axis in order of appearance without regard to the
numeric value (even if the item is numeric) of the x-axis label. If the row
headers are taken as the x values, the y values are taken from the selected
column of values; if the column headers are taken as the x values, the y
values are taken from the selected row of values.

3.3.1 Building Statistical Reports. The building of a statistical or tabular
report is a block-structured process. The block structure begins with the
command BUILD TABULAR REPORT and is terminated with END. The general syntax
form is:

BUILD TABULAR REPORT.
<row and column definitions>
[<category and section definitions>]

END.

A Tabular Report may be created with:

o rows and columns
o rows, columns, and categories
o rows, columns, and sections
o rows, columns, categories, and sections.

3.3.1.1 Row and Column Definitions. The tabular report must have rows and
columns. The row and column definitions are specified using a combination of
one or more of the following four matrix building processes:

" USE - uses the contents of a data field in the file to
generate row and/or column headers.

" SELECT - selects the contents of a number of fields from the file
defining each field as a row and/or column in the report.

3-59

o RANGE - ranges values and fills in the ranges from the data
file.

o EXPLICIT - specifically defines the name, calculation (or
countings) and conditions under which data is to be
entered in each element of the row and/or column.

The row and column specification can use the same or dissimilar processes.
These are mapped together to build the tabular report. Upon recognizing the
command BUILD TABULAR REPORT, GIPSY puts itself in a mode to accept ROW
definitions, COLUMN definitions, or an END statement. The END statement will
take GIPSY out of the tabular report building process. Both row and column
specifications must be completed in order to generate a tabular report. The
vectors are defined by specifying:

USE [UNSORTED)<list of fields>[<conditional/arithmetic expression>]
COLUMNS[:] SELECT <select list of fields>[<conditional/arithmetic expression>]
ROWS[:] RANGE <range definitions> [<conditional/arithmetic expressions>]

EXPLICIT <explicit definition>
* <explicit definition>

CALCULATED DATA - <arithmetic expression> [IF <conditional
expression>]

Again, each tabular report must have a ROWS and COLUMNS definition as a
minimum. A colon (:), a period (.) or a space may be used to separate the
vector mode (ROWS,COLUMNS) from its vector definition.

3.3.1.1.1 USE Process. The USE statement tells GIPSY to use the contents of
each of the specified fields to create the vector (row or column) headers. If
a value extracted from the specified field changes and has not already been
identified as a vector header, GIPSY will flag this item as a possible
candidate for the next vector header. If the value has occurred previously
from the same field, and is already a vector header, the vector containing the
header value is flagged as a candidate vector to have the corresponding data
vector updated. Note that we said that it is a "candidate" for update.
Neither the headers nor the body of the report is updated until GIPSY has
candidate vectors for both rows and columns.

In the USE statement, GIPSY's default is to automatically sort the vector
headers in ascending order. If UNSORTED is specified, the headers will be
added to the tabular report in the order encountered within the users data
file.

The <list of fields> on the USE statement is expanded as a list of field names
with optional prefixes separated by commas in the form:

<fieldname> ["<prefix literal>"] [,<fieldname2> ["<prefix literal>"]...]

If a <prefix literal> is specified, it is used as a prefix for the vector
header value extracted from that field contents.

3-60

. Note that all the USE command does is to build and/or identify the vector
headers. The actual contents of the data portion of the tabular report are
obtained from another source such as CALCULATED DATA or an explicit vector
definition for another vector mode (for a detailed explanation of CALCULATED
DATA see section 3.3.1.1.5). If USE is specified for both row and column, the
result is a cross tabulation of the contents of the two specified fields. The
body of the report will be composed of a count of the joint occurrences of row
and column items.

The optional clause defining the <conditional/arithmetic expression> allows an
arithmetic expression and/or a conditional expression to be attached to each
statement within the tabular report block structure. The general form of this
clause to be appended to the statement is:

o - [SUM] <arithmetic expression> [IF <conditional expression>]
o IF <conditional expression>

If an arithmetic expression is included, the value of the arithmetic
expression is added to each entry created by the associated <list of fields>.
The IF clause determines when data records will be made available to the USE
statement.

For example, let's assume that you have a data file as follows:

STATE NAME CODE LENGTH CAPACITY SURFACE PERSONNEL. AL MUSCLE SHOALS C 6693 C130 CONCRETE 150
AL BESSEMER C 3800 Al CONCRETE 75
AL FOLSOM FIELD C 5120 OVI CONCRETE 110
AL SHELBY COUNTY C 3800 T38 ASPHALT 58
FL ST.AUGUSTINE C 6947 C123 ASPHALT 120
FL JACKSONVILLE J 8000 C141 CONCRETE 352
FL SANFORD C 8000 P3 ASPHALT 161
GA ATHENS C 4989 C131 ASPHALT 81
GA BUSH FIELD J 8001 C135 ASPHALT 61
GA LEE GILMER MEM C 3998 Al ASPHALT 92

Suppose you need a report showing the names of airfields who have PERSONNEL
greater than 90, the name of the state it resides in, and its corresponding
surface. The following commands would produce such a report:

BUILD TABULAR REPORT.
ROWS. USE STATE IF PERSONNEL CT 90.
COLUMNS. USE NAME, SURFACE.

END.

3-61

The resulting report would be:

NAME SURFACE

AL MUSCLE SHOALS CONCRETE
AL FOLSOM FIELD CONCRETE
FL ST. AUGUSTINE ASPHALT
FL JACKSONVILLE CONCRETE
FL SANFORD ASPHALT
GA LEE GILMER MEM. ASPHALT

There is no need to presort the data since the matrix is dynamically built and
sorted on the row and column headers in ascending order when the report is
completed. Sorting of the report headers automatically occurs on any vector
mode (row or column) which was constructed with the USE process, unless the
UNSORTED option is used.

3.3.1.1.2 SELECT Process. A second report building function is accomplished
by the SELECT statement. When the file contains several numeric fields which
can be lifted as rows or columns in the tabular report, the SELECT statement
may be used to obtain those values from the file and include the fieldname in
the tabular report as vector headers.

SELECT is typically paired with a USE statement to build a tabular report. A
simple example based on our airfield file would produce the following report.

BUILD TABULAR REPORT.
ROWS. USE STATE.
COLUMNS. SELECT PERSONNEL.

END.

PERSONNEL

AL 393
FL 633
GA 234

Referring to the data file, the SELECT statement causes all PERSONNEL to be
summed for each corresponding STATE.

SELECT has an implied arithmetic process. Consequently, if SELECT is
specified on both rows and columns, the summation process will be done for
each vector mode. If a sum phrase (arithmetic expression) is included, its
value is computed and also added to the vector. An IF clause determines when
data is to be made available for the SELECT process.

BUILD TABULAR REPORT.
ROWS. USE CODE.
COLUMNS. SELECT PERSONNEL IF LENGTH GT 5500.

END.

3-62

PERSONNEL

C 431
J 413

In the above example and again referring to our data file, all personnel are
summed for the vector CODE whose runway lengths are greater than 5500.

If the fieldname is to be used as a column or row header, an alternate name
can be supplied. The syntax for the SELECT <list of fields> is:

<fieldnamel> ["<alternate headerl>"]
[,<fieldname2> ["<alternate header2>"] . .1

This statement causes GIPSY to use the fieldname, or alternate header, if
specified, as the header of a row or column. The alternate header must appear
on the same line as the fieldname.

3.3.1.1.3 RANGE Process. The third report building function is accomplished
by the RANGE statement. This statement allows you to establish sets of
numeric and alphanumeric ranges into which data will be processed. The ranges
are established as vector (row or column) headers and data is processed into
the data portion of the report in a manner similar to the USE, except that all
headers are predefined by the RANGE statement.

The general forms of the. range definitions are:

0 RANGE <fieldname> FROM <lower numeric value>
TO <high numeric value> [BY <numeric increment>].

o RANGE <fieldname> FROM <alphanumeric value> TO <alphanumeric value>.

The FROM-TO-BY portion of the statement above may be repeated as often as
desired as long as a comma is used to separate each set. Both forms may be
freely mixed within one range statement. The statement must end with a
period.

The FROM, TO, and BY arguments are used to define sets of ranges against which
the contents of the field identified by fieldname will be tested to
determine which range will be the candidate vector.

Using our data file, we may want to see a personnel breakdown by state. The
following commands would produce an appropriate report:

BUILD TABULAR REPORT.
ROWS. USE STATE.
COLUMNS. RANGE PERSONNEL FROM 0 TO 60, FROM 61-120,

FROM 121-180, FROM 181 TO 400.
END.

3
3-63

0-60 61-120 121-180 181-400
AL 1 2 1 0
FL 0 1 1 1
CA 0 3 0 0

Note that RANGE has no implied computations of data for the numeric portion of
the matrix, hence the data portion may contain counts, the results of an
arithmetic expression or some value calculated by another vector mode (e.g.,
SELECT).

3.3.1.1.4 EXPLICIT Process. If none of the three foregoing processing
methods are appropriate, then an explicit definition of each row and/or column
can be used. The explicit definition allows you to specify the name of the
vector, the computations for that vector and the conditions under which that
vector will be selected for processing or as a candidate vector. An asterisk
following the declarative ROWS indicates an explicit definition will follow.
The defined vectors are retained in the tabular report in the order specified.

The general form of the statement for explicit definition is:

<vector header> [- <arithmetic expression>] [IF <conditional expression>].

The <vector header> is 1 to 36 characters and is used as headers for the
specified row or column. If the header contains special characters, it must
be enclosed in quotes. Quotes are not required at other times but their use
is strongly recommended to avoid possible conflict with GIPSY command words.
The arithmetic expression is as we defined earlier. Recall that it may be a
name assigned to an entry in a previously defined math table.

The <conditional expression> can either be used by itself or in conjunction
with the <arithmetic expression>. It follows all the rules and conventions
defined for the RETRIEVE statement in section 3.2.8, including the use of
logic na'nes. If a <conditional expression> is not specified, every data
record becomes a candidate for this vector definition.

Each time a data record causes both the row and column to have a candidate
vector, the value of the arithmetic function is computed and summed into the
proper entry in the matrix. If an arithmetic expression is not specified, the
resulting value will be the counts of the occurrence of the specified
condition as a function of the other vector mode definition(s).

If no <conditional expression> is specified, the item always becomes a
candidate vector.

As many vector headers as desired may be specified subject to the limitations
imposed by your site on the size of TSS modules.

A tabular report using an explicit definition on columns and a USE on rows
would appear:

3-64

BUILD TABULAR REPORT.

ROWS. USE UNIT-TYPE.
COLUMNS.*

"NR ARMY UNITS"IF SERVICE EQ ARMY AND 3TATUS EQ READY.
"NR ARMY TROOPS"-SUM ACTLSTRNTH; IF SERVICE-ARMY AND STATUS EQ

READY.
"NR NAVY UNITS"IF SERVICE EQ NAVY AND STATUS EQ READY.

"NR NAVY TROOPS"-SUM ACTLSTRNTH;IF SERVICE EQ NAVY AND STATUS EQ

READY.
UNDERSTAFFED-DIFRNC IF SERVICE EQ ARMY, FAXIV AND STATJS EQ

READY.

END.

In the foregoing example, several permutations of the explicit definition are
used, including the use of a math name. It is assumed that a Math Table was

previously entered in which the equation "DIFRNC" was defined.

Each vector mode (ROW or COLUMN) may be specified using a single process

(e.g., USE) or as many combinations of processes as desired to define the

report. The integrity of the data from each definition is maintained and the

data is collected together. For example, if a SELECT and USE were used to

build the rows of a tabular report all the SELECTS will be collected in one

set of vectors followed by all the USE vectors.

Conditional expressions used here have the same syntax and semantics as

described in section 3.2.6. If a conditional expression is associated with. any statement or clause that conditional expression is evaluated prior to

attempting to perform the associated process.

3.3.1.1.5 Specifying Calculated Data Values. Another method for providing
values in the tabular report is to specify what is called a CALCULATED DATA

statement. CALCULATED DATA is a mechanism for specifying an equation whose

result is to be added to the proper element in the tabular report for the row

or column being processed. The data element updated is a function of the

definition for the vectors. However, the CALCULATED DATA function is a global

function. A CALCULATED DATA statement is not required. It is simply one of

the methods of specifying data computations to be applied to the tabular

report. If CALCULATED DATA is specified, its value is always added to every

qualifying entry in the tabular report for every qualifying record regardless

of whether additional computations will also be applied to the value. The

syntax for this statement is:

CALCULATED DATA - <arithmetic expression> [IF <conditional expression>].

The CALCULATED DATA value is calculated anew for each data record retrieved.

As an example, let's assume that we are working with an ammunition data file

which contains the number of crates of Colt 45 rounds (COLT-CRATES) and the

number of rifle rounds (RIFLE-CRATES) being sent to each company. Assume

further that we need to build a tabular report whose data elements are

3-65

measured in rounds. Knowing that there are 322 rounds in each rifle crate and
429 in each Colt crate, the problem is easy to solve. We simply tell GIPSY:

CALCULATED DATA-RIFLE-CRATES * 322 + COLT CRATES * 429.

Since CALCULATED DATA is a record function, the proper value will be
calculated for each record to be used in building the tabular reporL. The
tabular report definition itself identifies the specific vector to which these
values will apply.

If a <conditional expression> is included on the CALCULATED DATA sLatert.L,
the value of the arithmetic expression is computed only when the defined
condition is satisfied; otherwise, the value is undefined and a zero value is
assumed. If no conditional expression is used the value is always calculated.

3.3.1.2 Category and Section Definitions. Category and section definitions
are optional. They are used to expand the tabular report into a four
dimension report by adding a structure above the columns called categories and
above the rows called sections. Observe the illustration below.

CATEGORY I CATEGORY II
COL A COL B COL A COL B

SECTION I
Row I 1 4 2 7
Row 2 2 5 3 9
Row 3 3 6 5 11

SECTION II
Row 1 2 8 10 40
Row 2 4 10 20 50
Row 3 6 12 30 60

Note the symmetry of the row headers within the sections and the symmetry of
the column headers under the categories. Categories and sections are defined
using the same set of capabilities used to define rows and columns. Every
process defined for row and column in section 3.3.1.1 applies individually for
each section and category respectively. Any of the four report building
processes can be used on categories and sections regardless of the process
used to build the rows and columns.

The syntax and semantics of USE, SELECT, RANGE and * (EXPLICIT) are identical
to that of rows and columns except that they apply to the categories and
sections.

3.3.1.3 Defining Multiple Reports. During data retrieval, GIPSY uses the
BUILD TABULAR REPORT definitions to create a matrix of rows and columns which
is stored on a file called the Graphic Data Set (GDS). All previous
discussion has dealt with a GDS containing only a single matrix (tabular
report). GIPSY also has the capability of producing a GDS which contains
multiple reports. This feature is controlled by the BREAK command.

3-66

The syntax for the BREAK command is:

BA WHEN <conditional statement>
BREAK I. ON <field name> J

[[ID-[(SIZE <size option>)] { <fieldname> {<fieldname> }]][;D[S' sieoto> "<literal>" "<literal> ..

The BREAK statement affects the processing of QDF records in building the
matrix. Using the WHEN option will cause the current report building process
tn he termin.t~d wnd A new rapnrt bHilding process to be started whenever the

conditional expression is met. When using the ON option a new report will be
generated each time the <field name> changes.

The BREAK stat-ment must be entered prior to the RUN command. The ID option
is used to provide a unique label to each report. When the report is
displayed, the ID will appear directly beneath the title.

Consider the following data which contains information on equipment possessed
by various services.

SERVICE EQUIPMENT HOME DEPLOYED
NAVY SHIPS 12 90
NAVY PLANES 35 70
ARMY TANKS 39 80
NAVY SUBS 13 60
ARMY HELICOPTERS 29 30
NAVY SHIPS 14 20
ARMY HOWITZERS 42 70

Figure 3-5 shows how the BREAK command is used to create a separate report for
each service. Note that the row headers are different in each report. The

ACCESS command is used to load each report (see section 3.3.6).

3.3.2 Displaying Statistical Reports. You are now ready to actually produce
and display the tabular report from that portion of your data file which meets
the criteria defined in the RETRIEVE statement. (If no RETRIEVE statement is
specified the default is to retrieve all data records.) To initiate this
action the statement

RUN.

is issued. At this point, GIPSY will read the data file last specified in the
FILE statement, retrieve the records specified by the retrieval criteria, and
output the resulting data on a temporary file called the Qualified Data File
(QDF). When the retrieval portion is complete, GIPSY will display a message
showing the number of records read and retrieved.

3-67

GIPSY Release 5.1 (01 November 89) **PRODUCTION SYSTEM**

For any problems or questions about this release contact the GIPSY SUPPORT

OFFICE AT (703) 695-3519, A/V 225-3519.

FILE BRKFILE
FDT BRKFDT
BUILD TABULAR REPORT

ROWS: USE EQUIPMENT.
COLS: SELECT HOME, DEPLOYED.

END.

BREAK WHEN SERVICE CHANGES;ID U.S. ", SERVICE.

SORT ON SERVICE.

RUN

Data Selection started at 0553 46
Data Selection ended at 0553 49:

RECORDS RECORDS RECORDS
READ QUALIFIED IN ERROR

7 7 0

>DISPLAY REPORT.

U.S. ARMY

HOME DEPLOYED

HELICOPTERS 29 30
HOWITZERS 42 70

TANKS 39 80

>ACCESS REPORT 2.

>DISPLAY REPORT.

U.S. NAVY

HOME DEPLOYED

PLANES 35 70

SHIPS 26 110

SUBS 13 60

Figure 3-5. Example of BREAK Command

3-68

Each record placed on the QDF is processed against the tabular report block
structure. When all records have been processed, the tabular report is output
on a temporary file called the Graphic Data Set (GDS). Then GIPSY places you
in the graph and report output mode; the prompt character is displayed and the
keyboard is opened for commands. If the commands are coming from a PCS file
instead of the keyboard, GIPSY will resume processing from the PCS file rather
than opening up the keyboard for commands.

The different types of reports that GIPSY will display for you are:

o Tabular Report
o Bar Graph
o Histogram
o Point Graph
o Line Graph
o Curve Graph
o Step Graph
o Gantt Chart
o Pie Chart

3.3.2.1 Tabular Report. The command DISPLAY REPORT is issued whenever the
tabular report is to be displayed. The tabular report (matrix) is
automatically formatted to ensure a neat appearance of the data. If a TITLE
command was issued, the titles are centered, trailing zeros are dropped,
decimal points are inserted as appropriate, and all the columns are made
symmetric with respect to each other. The report is immediately displayed one. page at a time. If the report is a multipage report, all the rows will be
displayed followed by all the columns. Assuming a 9-page report, the pages
would be displayed and numbered in the sequence shown in figure 3-6. If the
report contains sections and categories, the process illustrated in figure 3-6
is repeated for each section, and then the section process is repeated for
each category. If a section or category is less than a page GIPSY will pack
as many complete sections and/or categories per page as will fit. It will not
place a partial section or category on the same page with a different one.

The syntax of the DISPLAY REPORT command is:

DISPLAY REPORT [STANDARD [MAXDEC <n>] [<vector list>])COMPRESSED] FIXDEC <n>

DISPTAY REPORT may be abbreviated to "D R" or "DR". The report is normally
displayed using the default STANDARD form in which spacing for all columns is
symmetric. COMPRESSED overrides the column symmetry function by removing
unnecessary spaces between columns to get more data on each page. An entire
page will be formatted and displayed. When the page is full, the keyboard
will be opened to accept new commands (a carriage return will continue cu-rent
processing). An end of page condition is indicated by sounding the bell
rather than displaying the prompt character.

3-69

COLUMN~S

R 1 of 9 4 of 9 7 of 9
Qw

2 of 9 5 cf 9 8 of 9

3 of 9 6 of9 }9 of 9

Figure 3-6. GIPSY Page Numbering

3-70

GIPSY calculates the number of integer digits and decimal places for each
column of the tabular report individually. All values are retained internally

as floating point numbers. If no value in the column contains a fractional
value, the column of data is displayed as a set of integers. If the column

contains any fractional value, the number of integer digits and decimal places
are determined by the largest value and the number of digits required to
represent the longest fractional part in the column. This length may be
reduced if the space is needed to display the integer portion of the nimber.
GIPSY's field width for a column of numbers will accommodate eight digits. If
any value in the column cannot be accommodated in this space, GIPSY will

revert to the scientific notation for displaying that column. In any case the
entire column will always be displayed according to the same format. If the
user wishes to have full control of the format of textual reports, then see
section 7 for a complete explanation of GIPSY's Generalized Data Reports. In
most cases the GIPSY computed format fur the column of numbers is adequate.
However, the optional parameter MAXDEC and FIXDEC allows the GIPSY format to
be overridden. MAXDEC <n> declares that no column in the tabular report shall

have more than <n> digits to the right of the decimal point. GIPSY will
continue to decide for those columns which will have less than the specified
value of <n>. The parameter FIXDEC declares that every entry in the tabular

report shall be displayed with the fixed number of decimal places as

specified. The command:

DISPLAY REPORT (FIXDEC 0).

will cause the entire report to be displayed as integers regardless of the

fractional parts. Every number will be rounded to the nearest whole number.

Reports whose values represent percentages are frequently displayed with
FIXDEC 2 as the optional parameter. This causes all values to be displayed in
the form <xx.ff> where <ff> represents two fractional digits and <xx>
represents up to six digits, as required, to display the integer portion of
the number.

A command such as:

DISPLAY REPORT (MAXDEC 3).

will cause a maximum of 3 decimal places to be printed, but will not add

decimal places to a set of values having less than 3 decimals (i.e., a column

of integers).

In its normal default mode of operation, GIPSY will display the entire defined
report. For a given display sequence, however, it may be desirable to display
only a limited subset of the entire tabular report. The last option on the

DISPLAY REPORT command allows a <vector list> which identifies specifically
which row, column, section, and/or category is to be included in the report

displayed. The detailed syntax of the <vector list> as used in the DISPLAY
REPORT syntax definition is of the form:

0 3-71

COLUMNS <name list>
ROWS <name list>
CATEGORIES <name list>
SECTIONS <name list>

where <name list> is a list of vector names from the identified vector mode.
This list of vector names may be a series of vector names separated by commas,
lists of vectors identified by a "thru" list, or combinations thereof. The

"thru" list is in the form:

<first vector desired> THRU <last vector desired>

If multiple vector modes are specified, each mode's <vector list> must be
terminated by a semicolon. If the <last vector desired> occurs ahead the

<first vector desired> in the tabular report, the order of appearance of the
vectors in the "thru" list will be reversed in the display.

The report displayed will consist of only the specified vectors; the vectors
will be displayed in the order specified in the vector list. (If no vectors

are identified all vectors will be included.) This display modification will
apply only for the duration of that DISPLAY REPORT command. This feature
allows the report to be dynamically reconstructed for display purposes without
disturbing the actual tabular report. For example, given a report with rows

named Rl, R2,....R50 and columns named A, B, C,...Z (appearing in that order)
the command:

DISPLAY REPORT (ROWS R50 THRU Rl; COLS Z,B,C,G THRU K,M,R THRU Y,A).

will cause the report to be displayed with the rows on reverse order (first

row will now be R50); columns D,E,F,L,N,O, and P will not be displayed and
columns Z and A will be interchange,.. Recall that the vectors will be
displayed in the order specified. If it is desirable to cause these same

limitations to be imposed on subsequent display actions, these limitations
should be defined via the LIMIT statement described in section 3.3.3.1.1.

The following examples of tabular reports use the specifications for reports
as described above:

Example 1: USE/USE

The user's file contains a field called REPORTTYPE whose contents are report
types, such as DISUM, SPIREP, SITREP, and OPREP3; and a non-numeric field

called CLASSIF whose contents are security classification symbols, such as T
(Top Secret), S (Secret), and C (Confidential). The user file containing
these data values is represented as follows:

3-72

REPORT- REPORT- CIASSI- NR-

TITLE TYPE FICATION PAGES

EXERCISE ALPHGIPSY DISUM S 30
EXERCISE LOW HEELS DISUM T 20
REPORT ON EXERCISE UTILITY SPIREP S 10
MESSAGE ANALYSIS REPORT 385 OPREP3 S 10
REFLECTIONS ON LOW HEELS SITREP S 10
MUSICAL CHAIRS 995 OPREP3 C 10
SITUATION STATUS SITREP S 10
CRISIS ACTION PLAN OPREP3 S 10
EXERCISE ANALYSIS PLAN SITREP T 10
EVALUATION 385 SPIREP S 10
GRAPHIC SUMMARY OF LOW HEELS SPIREP S 10
EXERCISE ANALYSIS GUIDELINES DISUM C 10
RESULTS OF ALPHGIPSY SPIREP C 10
RECOVER OF LOSSES SPIREP C 10

The user wishes to construct a report showing the distribution of classified
reports by report types. Since the fields REPORTTYPE and CLASSIF contain
information suitable for row and column headers and we want a count of
occurrence of each report by classification, we will specify a USE on both

rows and columns. The request we enter is:

FILE 8371DPXX/USER/DATA/FILE

FDT 8371DPXX/MYFDT
BUILD TABULAR REPORT.
COLUMNS. USE CLASSIF.

ROWS. USE REPORTTYPE.
END.

RUN.

The tabular report resulting from the USE/USE option appears as follows:

C S T
DISUM 1 1 1
OPREP3 1 2 0

SITREP 0 2 1
SPIREP 2 3 0

Example 2: RANGE with USE

Two forms of the RANGE option are illustrated below using an input file
containing fields called NAME, JOBCODE, and SALARY. Each field contains data
values related to the distribution of incomes among personnel in different

jobs. The file contains the following data:

3-73

NAME JOBCODE SALARY TYPE-WORK

JOHNSON, LARRY 123 10000 BLUE-COLLAR
SMITH, RICHARD 124 12000 BLUE-COLLAR

POWELL, WILLIAM 125 14000 BLUE-COLLAR

STEVENS, CAROLE 123 11500 BLUE-COLLAR
NELSON, ROBERT 124 14000 BLUE-COLLAR

VAUGHAN, NANCY 125 15000 BLUE-COLLAR

ALEEN, ANTHONY 125 15000 BLUE-COLLAR

MCPHERSON, ALISTER 123 12000 BLUE-COLLAR
WILLIAMS, ROGER 124 13000 BLUE-COLLAR

TUDOR, ELIZABETH 123 10500 BLUE-COLLAR

WALKER, JAMES BOSS 55350 SUPERVISOR

The following language statements create a matrix containing the count of
blue-collar employees by JOBCODE which qualify for the indicated salary range

intervals:

FILE COMPANY/PAYROLL

FDT PAYROLL/DESCRIPT

RETRIEVE IF TYPE-WORK-"BLUE-COLLAR".

BUILD TABULAR REPORT.
COLUMNS. RANGE SALARY FROM 10000 TO 11999, FROM 12000 TO

13999, FROM 14000 TO 15999.

ROWS. USE JOBCODE.

END.
CLASS UZZ.
TITLE "BLUE COLLAR JOB CODE WAGE DISTRIBUTION".

RUN

A tabular report for the resulting matrix would appear as follows:

UNCLASSIFIED

BLUE COLLAR JOB CODE WAGE DISTRIBUTION

10000-11999 12000-13999 14000-15999

123 3 1 0
124 0 2 1

125 0 0 3

UNCLASSIFIED

Note that since the ROWS were specified by USE, the labels were automatically
sorted in ascending sequence.

The above RANGE statement could be expressed more simply with the BY clause
added to the statement format, as follows:

3-74

COLUMNS. RANGE SALARY FROM 10000 TO 15999 BY 2000.

By adding the statement:

CALCULATED DATA - SALARY.

to the request, the tabular report produced would contain the total amount of

salary paid for each job code within the designated salary ranges.

Example 3. USE/SELECT

The SELECT with USE option creates a matrix whose columns are labeled with the
unique values from the specified field, and the rows are labeled with the

specified fieldnames. GIPSY sums the contents of each selected field and

places the total in the appropriate matrix location. Each field is handled
separately.

An example of the USE/SELECT option statements is shown below:

FILE FLITEFIL
FDT FWTDT.

BUILD TABULAR REPORT.
COLUMNS. USE FLIGHTNUMBER.

ROWS. SELECT NUMPASSENGER.
END.
RETRIEVE IF DAY LT 30 AND MONTH EQ 4,5.

* RUN

The statements specify a matrix with column labels taken from the contents of
the FLIGHTNUMBER field of the records in a user file. These values are

FLT604, FLT725, and FLT821. The row label is NUMPASSENGER, which is the name

of the specified field. The matrix resulting from these statements contains
the sum of the number of passengers, respectively, for each of the flights of

FLT604, FLT725, and FLT821.

The user file containing the data values is represented as follows:

FLIGHTNUMBER NUMPASSENGER MONTH DAY

FLT604 120 4 29

FLT725 100 4 29

FLT821 150 4 29

FLT604 200 4 30

FLT725 160 4 30

FLT821 180 4 30

FLT604 100 5 1

FLT725 150 5 1

FLT821 100 5 1

3-75

The user could display the resulting matrix and obtain a tabular report as
follows:

FLT604 FLT725 FLT821
NUMPASSENGER 220 250 250

It is possible to specify an alternate name to replace the fieldname as a
vector label in the SELECT option:

BUILD TABULAR REPORT.
COLUMNS. USE FLIGHTNUMBER.
ROWS. SELECT NUMPASSENGER "APRIL VOLUME".
END.
RETRIEVE IF MONTH EQ 4.

The matrix resulting from these statements would contain the sum of the number
of passengers for April. A tabular report for the matrix would appear with the
optional row label:

FLT604 FLT725 FLT821
APRIL VOLUME 320 260 330

Example 4. USE/USE 4ith Arithmetic Expression

The following example illustrates adding an arithmetic expression to a USE
statement:

RETRIEVE IF CINC EQ "3 N", 3N AND TOF BT 060001/082359
AND MONTH EQ JUNE.

BUILD TABULAR REPORT.
ROWS. USE REPORTTYPE - TEXTLINES.
COLUMNS. USE CLASSIFICATION.
END.

The user file containing the data values is represented as follows:

CINC TOF MONT TEXTLINES REPORTTYPE CLASS

3 051330 JUNE 214 DISUM S
3 061445 JUNE 220 DISUM S

3N 051440 JUNE 10 SITREP T
3N 051543 JUNE 100 OPREP3 S

3N 051835 JUNE 20 SPIREP C

3N 051930 JUNE 5 DISUM T

3N 061550 JUNE 50 SITREP S

3N 061600 JUNE 200 OPREP3 C

3N 061747 JUNE 30 SPIREP S

3N 061820 JUNE 15 DISUM C

3N 071430 JUNE 300 OPREP3 T

3N 071510 JUNE 40 SPIREP S

3-76

3N 071545 JUNE 25 DISUM T
3N 071650 JUNE 60 SITREP S

The input file for this example contains statistics on teletype messages
originated by several CINCs. Data fields include CINC, whose values are
alphanumeric codes; TOF, whose values are the times of file for each message;
REPORTTYPE, whose values include DISUM, SITREP, OPREP3, and SPIREP;
CLASSIFICATION, whose values are codes C (Confidential), S (Secret), and T
(Top Secret); and TEXTLINES, whose numeric values are the number of text lines
per report type.

The RETRIEVE statement qualifies input file records containing CINC codes "3N"
or "3 N" and message times of file between 0001 hours on June 6 and 2359 hours
on June 8.

The arithmetic clause on the USE statement causes the number of lines of text
to be summed together for each intersection of a row and column. If the
clause was omitted the matrix value would simply give a count of how many
documents had a particular classification.

A tabular report for the resulting cross tabulation is shown below:

C S T
DISUM 15 35 25
OPREP3 200 0 700
SITREP 0 180 0
SPIREP 0 70 50

Example 5: EXPLICIT/USE Combination.

In this example, the explicit vector definition (EXPLICIT or *), in
combination with USE, generates data counts for each of the unique data values
occurring in the field specified by the USE option.

The following data is used:

STATECODE POPULATION AREACODE

AK 1000 A
PA 500 A

500 C
NY 2000 B
AK 500 B
AK 600 C
AL 500 A
PA 1000 B
NY 1000 C
NJ 500 A

1000 C
PA 5000 C

3-77

The objective of the report is to produce a tally of area codes by states
showing both the numbers of small areas and a total distribution of areas by
state.

The GIPSY command sequence is:

BUILD TABULAR REPORT.
ROWS. USE STATECODE.
COLUMNS. *
"SMALL AREAS" IF POPULATION LT 1000.
"TOTAL AREAS".

END.

GIPSY dynamically assigns each unique occurrence of STATECODE to a row vector,
creating row labels. The explicit statement creates the column labels. Each
record is then effectively counted into the proper row and column of the
report. As GIPSY proceeds sequentially through the file, it creates new rows
(and resorts the row headers) as new values are encountered for STATECODE. If
the value was previously encountered, it is already in the report; thus, GIPSY
will find it and add one to the proper column in that row for each subsequent
occurrence. The proper column is selected by inspecting the conditional
expression in the explicit definition. Data will always qualify for the
column TOTAL AREAS since it contains no conditional expression to select its
data as does SMALL AREAS.

The tabular report resulting from the operations on the file contains a count
for the single explicit vector, Pc follows:

SMALL AREAS TOTAL AREAS
(blank) 1 2
AK 2 3
AL 1 1
NJ 1 1
NY 0 2
PA 1 3

A selected population summary is produced by:

BUILD TABULAR REPORT. ROWS. *
ALASKA IF STATECODE EQ AK.
PENNA IF STATECODE EQ PA.
COLUMN. SELECT POPULATION.
END.

The user file is the same as for the previous example. The tabular report for
the above PCS is:

POPULATION
ALASKA 2100
PENNA 6500

3-78

. Example 6. SECTION Definition

The user's file contains the data values as follows:

FLIGHT NUMBER NUMPASSENGER DATE
FLT604 120 JUNE29
FLT725 100 JUNE29
FLT821 150 JUNE29
FLT604 200 JUNE30
FLT725 160 JUNE30
FLT821 180 JUNE30

The user wants to construct a report showing the number of passengers on each
of the flights. Furthermore, the user wants to subdivide the flight numbers
by the day they occurred. The request entered is:

FILE FLIGHTFILE
FDT FWTDT
BUILD TABULAR REPORT.
SECTIONS. USE DATE.
ROWS. USE FLIGHTNUMBER.
COLUMNS. SELECT NUMPASSENGER.
END.
RUN.

The statements specify a matrix with row labels taken from the contents of the
FLIGHTNUMBER field of the records in the user's file. The section labels will
be taken from the contents of the DATE field of the records in the user's
file. The column label is NUMPASSENGER, which is the name of the specified
field.

The tabular report for the resulting matrix is as follows:

JUNE29 NUMPASSENGER
FLT604 120
FLT725 100
FLT821 150

JUNE30
FLT604 200
FLT725 160
FLT821 180

Exampie 7. CATEGORY and SECTION

Let us assume a user data file of message traffic containing the data values

represented as follows (one record per message):

3-79

CINC TOF MONTH TEXTLINES REPORTTYPE CLASS

3 051330 JUNE 214 DISUM S
3 061445 JUNE 220 DISUM S

3N 051440 JUNE 10 SITREP T

3N 051543 JUNE 100 OPREP3 S

3N 051835 JUNE 20 SPIREP C
3N 051930 JUNE 5 DISUM T

3N 061550 JUNE 50 SITREP S
3N 061600 JUNE 200 OPREP3 C

3N 061747 JUNE 30 SPIREP S
3N 061820 JULY 15 DISUM C
3N 071430 JULY 300 OPREP3 T

3N 071510 JULY 40 SPIREP S
3N 071545 JULY 25 DISUM T

3N 071650 JULY 60 SITREP S

3N 081350 JULY 70 SITREP S
3N 081505 JULY 400 OPREP3 T

3N 081555 JULY 50 SPIREP T
3N 081616 JULY 35 DISUM S

The statements below will show the use of all four vector modes in a simple
application using the data file shown above:

FILE MY/DATA/FILE
FDT MY/DATA/FILEFDT

BUILD TABULAR REPORT.

CATEGORY. USE MONTH.
SECTION. USE CLASS.

COLUMN. USE (UNSORTED) CINC.
ROW. RANGE TOF FROM 50000 TO 90000 BY 10000.

END.
RUN.

DISPLAY REPORT.

Since no arithmetic processes were implicitly or explicitly used in the
tabular report definition, the system will build the tabular report using the

count of occurrences of records broken out as specified in the BUILD TABULAR

REPORT block. The reader should refer back to the file listing on the

previous page to observe how the values were included on the tabular report.

JUNE JULY

3 3N 3 N 3 3N 3 N

C
50000-59999 0 1 0 0 0 0

60000-69999 0 0 1 0 1 0

70000-79999 0 0 0 0 0 0

80000-89999 0 0 0 0 0 0

90000-90000 0 0 0 0 0 0

3-80

S
50000-59999 1 1 0 0 0 0
60000-69999 1 2 0 0 0 0
70000-79999 0 0 0 0 2 0
80000-89999 0 0 0 1 2 0
90000-90000 0 0 0 0 0 0

T
50000-59999 0 2 0 0 0 0
60000-69999 0 0 0 0 0 0
70000-79999 0 0 0 0 1 1
80000-89999 0 0 0 0 1 1
90000-90000 0 0 0 0 0 0

The above report shows the number of messages distributed over TOF and grouped
by classification and organized by CINC code within each month. If a tally of
number of lines of text were desired rather than number of messages simply add
the statement CALCULATE DATA - TEXTLINES to the PCS.

3.3.2.2 Bar Graphs. The general form of the syntax for displaying a bargraph
is:

DISPLAY BAR [GRAPHJ [<y-axis title>] [<x-axis title>] [<value options>]
<graph details>.

The word GRAPH may be added, if desired, to improve readability of the
statement. The <y-axis title> is composed as follows:

[OF] [Y-TITLE] "<literal>" [(SIZE <size option>, COLOR <color option>)]

The "<literal>" contains the text that will be displayed vertically along the
y-axis to inform the viewer of the meaning of the numbers labeling the y-axis.
The format for the <x-axis title> is:

X-TITLE "<literal>" [(SIZE <size option>,COLOR <color option>)]

The "<literal>" is the text that will be displayed horizontally between the
x-axis labels and the legend which defines the bars on the x-axis.

The <size option> establishes the size of the text. Valid options are SMALL,
MEDIUM, LARGE, and JUMBO. The default is the current size.

The <color option> identifies the color of the text. If no color is
specified, the current color is used.

The <value option> clause is used to label each individual bar with its
numeric value. The syntax for this statement is:

[WITH] VALUE[S] INTERNAL [(CENTER,SIZE <size option>, COLOR <color option>)]

BOTH

3-81

The word WITH may be used to improve readability. The VALUE phrase causes the
values to be added to the bargraph display. The system default is external
labels. If INTERNAL is specified the value will be printed inside the top of
each bar.

For stacked bargraphs, the EXTERNAL label provides a combined total at the top
of each bar, while INTERNAL labels will provide the value of each stacked
segment. If BOTH is requested, the resulting bargraph will contain individual
values for each portion of the stacked bar plus a total value for the entire
bar written at the top.

The CENTER option causes the INTERNAL labels to be vertically centered within
each bar. The default will display the label inside the top of each bar.

The <size option> establishes the size of the label. Valid options are SMALL,
MEDIUM, LARGE, and JUMBO. The default is the current size.

The <color option> identifies the color of the label. If no color is
specified, the current color is used.

The <graph details> define the rows, columns, categories and/or sections to be
used to build the bargraph. They also define the format of the bargraph
(e.g., grouped, stacked, etc.) shading and legend information. The various
graph details are preceded by the verbs USING, STACKING, FOR or PAGING. All
bar graphs must have either USING or STACKING specified. The FOR verb is
optional, and is used to explicitly define the x-axis headers. The PAGING
verb is used with reports containing sections or categories. Following is the
syntax:

UING ROWS
TACKING COLUMNS
'FOR] SECTION

N C[(<shading/color options>)]

The USING phrase defines the vector mode (ROW, COL, etc.) and the name of the
vector(s) within that vector mode which identifies the set (or vector) of
numbers to be plotted as bars. Referencing the limited tabular report last
shown, we can produce the bargraphs in figure 3-7 with the command:

DISPLAY BAR GRAPH USING COLUMN 0-4.

Note that each value of column 0-4 is plotted with its corresponding ROW
header identifying it on the x-axis.

Figure 3-8 was produced by issuing the command:

DISPLAY BAR USING ROW CCTC.

S
3-82

C.)0

-4

Cho
r.

-4

a

'-4
9k

3-83I

0-0
C)Y

4
4

cd

0 1 c0

'-4

3-844

Note that GIPSY adjusted to the use of rows and plotted the column headers on
the x-axis.

The set of parameters <vector name> ["<legend name>"] [(<shading/color

options>)] may be repeated for each vector in the indicated vector mode.
However, each repetition must be separated from the other by a comma. If mcre
than one vector is supplied, they will be grouped with the corresponding
vector mode producing what was referenced as a HISTOBAR in earlier releases of
GIPSY. This will be illustrated shortly.

We have used the <vector name> in our preceding examples; however, there are a
few idiosyncrasies which must be pointed out. If the vector mode is numeric
or contains special characters, the name of the vector mode must be enclosed
in quotes. GIPSY will group together as many bars for as many vector names
you specify. If more than one vector is used, GIPSY will automatically create
a legend to identify the data elements. The name of the vector will be used

unless a <legend name> is specified. The <legend name> must always be in
quotes if used and it must immediately follow the <vector name> to which it
applies.

GIPSY automatically determines the size of the bar and the spacing between the
bars as a function of the number items to be plotted. It will also figure out
shading patterns for che bars in order to separate the details. You may
choose to override GIPSY's shade selection and apply your own. If you specify

<shading/color options> for any item, GIPSY's shade selection mechanism is
turned off; shading of all bars becomes your responsibility. The. <shading/color options> on the DISPLAY BAR GRAPH command consists of shading
line density (DENSITY), shading direction (SHADE), shading line color (COLOR),
and the color fill for the bar (FILL). Recall from the syntax ot the
<shading/color options> that all of these options must be collected within
parentheses following the vector name (or <legend name> if supplied). The
first option describes the thickness of the shading line. This may be
specified with one of three line densities:

LIGHTDENSITY . MEDIUM?

LHEAVY)

The second option describes the direction of the shading line and has the

following syntax:

LEFT

SHADE ACROSS

UP

DOWN
NONE

3-85

LEFT refers to a left slant diagonal shading; RIGHT, refers to a right slant
diagonal shading; ACROSS is horizontal shading; UP and DOWN are vertical
shading. Since multiple directions may be specified for any item resulting in
16 different directional combinations, each direction should be separated from
the other with a comma or the word AND.

For reports produced on a color graphic terminal, GIPSY provides the third
capability of adding colurs to the bar graph. The syntax for color options is:

! COLOR } <color name>
IFILL

The COLOR parameter defines which color the bar outline and shading will be
drawn in. FILL defines the color with which the box will be filled. The
<color name> is a color such as RED, GREEN, or BLUE defined in GIPSY for the
particular terminal in use. See section 3.2.3.17 for further discussions of
color usage.

The shading pattern and density for the bar graph should be carefully
selected. They can convey significant implications. intended and unintended.
They also have a significant impact on the appearance of the graph. There are
a number of factors which must be considered in selecting these parameters
including the number of bars to be displayed. In fact, it is possible to
produce an ambiguous situation because the size of the bar does not permit the
entire shading pattern to be obvious. The system default shading addresses
many of these factors. However, there is no substitute for human selection
based on the intent of the display.

Now we can specify the bar graph:

DISPLAY BAR GRAPH OF "NR. OF OFFICERS" USING COLUMNS
0-1 "ENSIGNS"" (SHADE LEFT),
0-2 "LT/JG" (SHADE LEFT AND RIGHT),
0-3 "LIEUTENANT" (SHADE ACROSS, DOWN).

The display results are shown in figure 3-9. Note that we also specified a
title that is appropriate for this graph:

TITLE "JUNIOR NAVAL OFFICERS IN JOINT SERVICE AGENCIES" (SIZE J);
"(WASHTNGTON METRO AREA)" (SIZE MEDIUM).

The size of the characters used in most cases depends upon the current setting
of the character size. In this case, the character size was set too large.
It for some reason we wanted to have a different character size we could
change it with the SET command, then reissue the display command. It would
not be necessary to reissue the TITLE statement because the last title will
remain in effect until changed by another TITLE statement.

The STACKING phrase which may also be used in the DISPLAY BAR GRAPH command
a1lows you to graphically stack vectors and distinguish those vectors via

3-86

La

LJ

C.>

we

Liin
0

ob

6.2x

C.),2

-4C

3-87

shading. Stacked vectors are plotted one on top of the other in the order
specified. For example, figure 3-10 was produced with the command:

DISPLAY BAR STACKING ROWS
OJCS (SHADE ACROSS, UP, DENSITY HEAVY),
CCTC (SHADE ACROSS, AND UP, DENSITY MEDIUM),
WHCC (SHADE ACROSS AND UP, DENSITY LIGHT).

USING and STACKING are not mutually exclusive as it may first appear. You may
use STACKING and USING in a single DISPLAY BAR command if your tabular report
will support it. Your tabular report must have sections and/or categories in
order to specify both a USING and a STACKING phrase. The
resulting grouped stacked bar graph is a fairly complicated graph. The
parenthetical options on the STACKING phrase will be used when both STACKING
and USING appear in a single DISPLAY BAR GRAPH command. The legend will
reflect the STACKING options and the USING vectors will be grouped and
labelled on the x-axis as shown in figure 3-11, which was produced from our
last tabular report using the following commands:

DISPLAY BAR USING CATEGORY ARMY, USAF;
STACKING COL 0-1 "2LT", 0-2 "ILT", 0-3 "CPT".

Pay particular attention to the placement of the informdtion with respect to
that specified in the command.

GIPSY provides the FOR phrase to override the default x-axis name, and to
specify exactly which vector mode and which vector names will be used. The
x-axis name normally defaults to all column headers if row-vectors are
graphed, to all row headers if column-vectors are graphed.

The list of x-axis names takes any of the following forms or some combination
thereof:

(1) <vector name> [, <vector name>, ...]

(2) <vector name a> THRU <vector name b>
(3) <vector name b> THRU <vector name a>

In other words, you may spell out a list of specific vector names or a range
of vector names, advancing forward or backward through the vector names. The
vector names will be included on the graph in the order that they appear in
the list.

If the FOR clause had been specified, the command for producing figure 3-10
could have been:

DISPLAY BAR USING CATEGORY ARMY, USAF;
STACKING COL 0-1 "2LT", 0-2 "lLT", 0-3 "CPT"';
FOR ROWS OJCS, CCTC, WHCC.

3-88

o'qo

0-4"-

aU

-o

Law
c

-e - -- - -- -

oz

I
-t

Llf I

cuj cu
-8

A~5flCL

I-

jv5n

cu C

bD

-4

I bA
- -4

cc ~~ sn -

L. Q .

3-90'

The last phrase is PAGING. This phrase allows you to notify GIPSY to create. multiple graphs from the single DISPLAY BAR GRAPH command; the next page will
reflect the next parallel set of data, the next section, the next category,
etc.

For each vector name listed, a new graph will be displayed on a new page using
the same DISPLAY BAR GRAPH command. If no list is supplied, GIPSY will page
on each vector in the referenced vector mode.

Returning to our growing DISPLAY BAR command, we could produce a graph for
section FY80 (as page 1) and FY81 (as page 2) with a single command if we
added a PAGING phrase.

DISPLAY BAR USING CATEGORY ARMY, USAF;
STACKING COL 0-1 "lLT", 0-2 "2LT", 0-3 "CPT-;
FOR ROWS OJCS, CCTC, DIA, WHCC;
PAGING SECTIONS FY80, FY81.

When utilizing multiple phrases in a single DISPLAY BAR GRAPH command be aware
that each phrase utilizes one of the vector modes of your report. You cannot
page on the same vector mode that you are STACKING; you cannot stack on the
same awde that you are USING for your x-axis, etc.

All our examples thus far have used row or column as the actual vector
graphed. But, the reader should particularly note that any mode can be used
for any phrase. Observe the result of this command in figure 3-12. We're. using the tabular report without the LIMIT.

D B U SEC; PAGE ROWS; S COL; FOR CAT.

Note the abbreviations (D for DISPLAY, B for BAR, U for USING, S for
Stacking, ...)

3.3.2.3 Histograms. A histogram is simply a bar graph with no spacing
between the individual bars. It is ideal for displaying trends of data or
sequences of information. The syntax is the same as that for the bar graph
except that the word HISTOGRAM is substituted for BAR:

DISPLAY HISTOGRAM [<y-axis title>] [<x-axis title>] [<value options>]
<graph details>.

The report in figure 3-13 was produced by the command:

DISPLAY HISTOGRAM OF "NUMBER OF HOURS" USING COLUMN JANUARY.

3.3.2.4 Point and Line Graphs. The syntax and semantics for the point graph
and the line graph are very closely related to the bar graph discussed in
section 3.3.2.2. The general form of the syntax is:

3-91

LL

-- 4

18A1I

-4

CC

04

Ck.,

MIo

4c4

O~id

I i S 'l W I W 0 - W

3-92

NN~La I I4

08A

(4-

0

XrL) C

cc#-

'-a"

wtC
r-4

cr

Lb en *l lb * c* l

3-93

~~q.

r.

wz;~~& . .14

00

himo
OwO

4 04

hi"'o

-3-9

060

41

=8 > .
M__ f04

at

4Cu

-4

Cc

cu6

3-954

wr-r

ru W

m fn

ru fu

M -m

-w

0o-4 C
-44

Lflh-

0--m
(J~r - -El

obO

=1to
Ma

C>w

(a

(U 40 co W u0

3-96

DISPLAY { LINE I} [GRAPH] [<y-axis title>] [<x-axis title>] [<value
option>] <graph details>.

The point graph is a proper subset of the line graph. Consequently we will
discuss the line graph and indicate the limitations for the point graph.
The word GRAPH may be added, if desired, to improve readability of the

statement. The <y-axis title> is composed as follows:

[OF] [Y-TITLE] "<literal> "[(SIZE <size option>, COLOR <color option>)]

The "<literal>" contains the text that will be displayed vertically along the
y-axis to inform the viewer of the meaning of the numbers labeling the y-axis.

The format for the x-axis title is:

X-TITLE "<literal>" [SIZE <size option>, COLOR <color option>]

The "<literal>" is the text that will be displayed horizontally between the
x-axis labels and the legend which defines the points or lines.

The <size option> establishes the character size of the text for the titles.
Valid options are SMALL, MEDIUM, LARGE, and JUMBO. The default is the current

size.

The <color option> identifies the color to be used for the text of the titles.

If no color is specified the current color is used.

The <value options> has the format.

[WITH] VALUE[S] [(SIZE <size option>, COLOR <color option>)]

This phrase will cause the actual value of each point on the graph to be

plotted as a label next to that point.

The word WITH may be added, if desired, to improve readability of the
statement.

The <size option> establishes the size of the data to be used as the label.
Valid options are SMALL, MEDIUM, LARGE, and JUMBO. The default is the current
size.

The <color option> identifies the color of the data to be used with the label.

If no color is specified the current color is used.

The <graph details> on the DISPLAY LINE GRAPH and DISPLAY POINT GRAPH command,
like the DISPLAY BAR GRAPH, may be made up of USING, STACKING, FOR or PAGING
phrases. The syntax and semantics are the same as DISPLAY BAR GRAPH except

3-97

that the combined USING and STACKING is undefined and the graph details
refer to line types and points rather than shading and density.

The DISPLAY LINE GRAPH and DISPLAY POINT GRAPH command may contain either a
USING or a STACKING phrase, specifically:

ROW
USING COLUMN
tTACKING) SECTION [<y-vector> ["<legend name>"] [(<line/point options>)]]

CATEGORY

USING will cause each vector to be plotted against its own value; STACKING
will cause each point on each succeeding line to be the sum of all
corresponding points on all previous lines. The <y-vector> is the vector in
the tabular report containing the y values of the line or point. The x values
will be the vector headers corresponding to each of the y values.

For example, if columns are used for the y-axis, the row headers will be
plotted as labels on the x-axis. There is no predefined proportion between
the x value and the y value as in the result of some equation y-f(x). The
<legend name> specifies the name to be used in the legend rather than the
vector header from the tabular report; if a <legend name> is not specified the
vector header will be used.

The <line/point options> are used to distinguish differences among the lines
on the graph. They consist of a line type, a point, a point size, and a
color. The specific syntax ft-r the <line/point option> on the DISPLAY lINE or
DISPLAY POINT command is:

LDOTTED

DASHED
DOT-DASH)

POINT - " single character

SIZE - JUMBO
LARGE
MEDIUM

COLOR - <color name>

You may use any one or a combination of these options as long as each option
is separated from the other with a comma. The single character on the POINT
option will be plotted on the line at the point representing the value of the
line at that point. The size of the plotted character will be the current
character size setting unless a SIZE option is included, in which case the
specified size will be used. The LINE option is used only for the DISPLAY
LINE command.

3-98

The capability to display a colored line may be done one of two ways. The
first requires the user to specify the in-line COLOR options in the DISPLAY
LINE [GRAPH] command which identifies an individual color for a specific line.
The option to allow GIPSY to automatically select an individual color for
every line may be accomplished by using the following command:

SET LINE COLOR {ONOFF

The default is SET LINE COLOR OFF. If SET LINE COLOR ON is issued, all
subsequent lines will be colored unless the in-line COLOR options or SET LINE
COLOR OFF option is used. Colors will be obtained from the default color
table when the SET LINE COLOR ON option is used.

GIPSY will select default points to identify the various lines on the graph if
no <line/point options> are specified.

This statement may also have a FOR and a PAGING phrase which serves the same
function as described for the bar graph in section 3.3.2.2.

A typical line graph as shown in figure 3-14 was generated with the command:

DISPLAY LINE GRAPH USING CATEGORY ARMY, NAVY; FOR COLUMNS
0-1 THRU 0-4.

3.3.2.5 The Curve Graph. The curve graph is the classic graph of the. variables from an equation of the form y-f(x). In this form there is a
numeric relationship between the x-axis and the y-axis. This relationship
does not exist in GlPSY's line graph. The curve graph typically requires a
little more advanced planning because the x-vector and its corresponaing
y-vector are extracted from the body of the report. The vector names are only
used as identifiers for the individual vectors. The actual value of an x-axis
label has no numeric value on a line graph. The curve graph differs in that
the x-axis labels are numeric values. The graph assumes a rectangular
Cartesian coordinate system with a definite numeric relationship between the
x-axis scaling and y-axis scaling. The general form of the syntax for the
DISPLAY CURVE command is:

DISPLAY CURVE [GRAPH] [<y-axis title>] [<x-axis title>] <graph details>.

The word GRAPH may be added to improve readability. The <y-axis title> is
composed as follows:

[OF] [Y-TITLE] "<literal>" [(SIZE <size option>, COLOR <color option>))

The "<literal>" contains the text that will be displayed vertically along the
y-axis to inform the viewer of the meaning of the numbers labeling the y-axis.
The format for the <x-axis title> is:

3-99

0"q

wC

LL..

LAE
CL

La4

-01

a

La.

3-10

X-TITLE "<literal>" [(SIZE <size option>, COLOR <color option>)]

The "<literal>" is the text that will be displayed horizontally between the
x-axis labels and the legend which defines the lines being displayed.

The <size option> establishes the size of the text. Valid options are SMALL,
MEDIUM, LARGE, and JUMBO. The default is the current size.

The <color option> identifies the color of the text. If no color is
specified, the current color is used.

The <graph details> define the vector mode of data from the tabular report to
be used to plot the curve graph. The various <graph details> are preceded by
the verbs USING, FOR or PAGING. All curve graphs must have USING specified to
identify the vector mode and all the sets of x-y vector pairs to be plotted.
The FOR and PAGING are optional.

The following syntax should be used to describe the <graph details>

USING <vector mode>, <curve parameter>
[;FOR <vector mode> <list of identifiers to be included>]
[;PAGING <vector mode> <list of vectors for pages>]

The USING phrase defines the <vector mode> and <vector name> which identifies
the set of numbers to be plotted. The <vector mode> is the usual ROWS,
COLUMN, SECTION or CATEGORY. This <vector mode> is used to tell GIPSY which
vector mode of data from the tabular report will be used for thc abscissa (x)
and ordinate (y) values. The <curve parameter> details the actual name of the
abscissa and ordinate vectors, the type of line to be used in plotting the
curve, point markers, and color to be used. The <curve parameter> is made up
of one or more groupings of abscissa and ordinate descriptors sets; the sets
must be separated from each other by a semicolon; each vector within the set
must be separated from the other by a comma. A single set is of the form:

X-<x-vector name>, Y-<y-vector name> ["<legend name>"] [<line/point options>)]
[,<y-vector name 2> ["<legend name>"] [(<line/point options>)]
[,<y-vector name n> ["<legend name>"] [(<line/point options>)].

This form will create a family of curves all sharing the same x values.

This X,Y pair definition may be repeated as often as needed; each repetition
must be separated from the other by a semicolon.

Let us try to clarify this with an example from the tabular report in
figure 3-15. Note the use of the language in the command:

DISPLAY CURVE USING COLUMNS X=DAY
Y-LOSSES (LINE DOTTED), AVAILABLE (LINE DASHED).

0 3-101

REPORT ON LOSSES FOR FIRST 1e0 DAYS
I OF

DAY LOSSES AVAILABLE
a1 6 s.0 ?0.0
*a 2 5.0 69.6
03 4 6.6 63.0
04 6 5.6 66.5
9s a 5.3 6S.0
66 1* 5.8 63.0
07 12 6.0 61.6
03 14 6.S s9.0
09 16 7.6 S6.S
10 13 7.1 S4.0
11 B0 3.S S1.6
12 22 9.3 48.0
13 24 i.S 44.09
14 26 12.0 40.0
is 23 13.3 36.0
16 30 1S.6 32.0
17 32 16.5 23.5
13 34 19.6 26.6
19 36 22.0 24.0
26 33 25.s U2.0
21 40 29.0 6.0
22 42 34.6 13.S
Z3 44 39.0 17.0
24 46 44.0 15.3
as 48 So.6 IS.*
as so S6.0 14.0
27 52 S9.0 13.0
a3 S4 61.6 12.S
89 s W0.6 12.6
39 5 49.0 11.3
31 60 3S.S 11.3
37 62 .6 19.3
33 64 27.S 2.S34 66 2S.3 10.3
3S SO 23J.S 10.o
36 "74 U.0 9.8
37 72 1 .O 9.8
38 74 20.O 9.7
29 76 19.0 9.S
47 3 18.0 9.5
41 of 16.3 9.4
42 2 IS.8 9.3
43 34 14.8 9.2
44 16 13.0 9.1
45 12.3 9.0
46 90 18.6 3.0
47 9a 11.3 3.0
48 94 11.0 3.0
43 SI 10.5 3.0

n03 10.0 3.6

Figure 3-15. Tabular Report for Curve Examples

3-102

The results are shown in figure 3-16. In this case, we used the columns as
the vector mode and GIPSY automatically selected the rows to determine the
sequence of points to plot with the default of plotting all points. The FOR
phrase allows you to specify which items within the specified x vector are to
be plotted. If the report has categories or sections it allows you to select
the vector mode to be used.

3.3.2.6 The Step Graph. The step graph, like the curve graph, assume. a
numeric relationship between the x-axis and the y-axis. For a given set of
x-axis values, one or more sets of y-axis values can be plotted, each set of
y-values being a function of the x-values. Unlike the curve graph, however,
it does not represent a continuous relationship but shows an instantaneous
change in y-value at each distinct x-value. The y-values between the distinct
x-values are represented as a horizontal line having the value of the previous
y, thus giving "steps" up or down the y-axis. Figure 3-17 is an example of
such a step graph. The step graph is a good tool for showing distinct changes
of a quantity over a period of time, such as shipments of supplies which
arrive on a periodic basis. The general form of the syntax for the DISPLAY
STEP command is:

DISPLAY STEP [GRAPH] [<y-axis title>] [<x-axis title>] <graph details>.

The word GRAPH may be added to improve readability. The <y-axis title> is
composed as follows:

[OF] [Y-TITLE] "<literal>" [(SIZE <size option>, COLOR <color option>)]

The "<literal>" contains the text that will be displayed vertically along the
y-axis to inform the viewer of the meaning of the numbers labeling the y-axis.

The format for the x-axis title is:

X-TITLE "<literal>" [(SIZE <size option>, COLOR <color option>)]

The "<literal>" is the text that will be displayed horizontally between the
x-axis labels and the legend which defines the lines being displayed.

The <size option> establishes the size of the text. Valid options are SMALL,
MEDIUM, LARGE, and JUMBO. The default is the current size.

The <color option> identifies the color of the text. If no color is
specified, the current color is used.

The <graph details> define the vector mode to be used to build the step graph.
The various <graph details> are preceded by the verbs USING, SHOW, FOR, and
PAGING. All step graphs must have USING specified. The SHOW verb is optional
and allows the user to show the relationship between two step functions by
shading or color filling between the lines representing the functions. The
FOR verb is also optional and is used to explicitly define the x-axis names.
The PAGING verb is used with reports containing sections or categories.

3-103

;1 we

9A1

LA'NJ

I £

iff

3-104

I .

a-4
IL I3c

I a

0 0 4

CD w wv c 0 a

c- IW W" W4 W4 W

3-10

Following is the syntax for the above mentioned verbs:

USING <vector mode> X-<vector name>,Y-<vector name> "<legend name>"
[(<line options>)][,<vector name> "<legend name>" [(<line

options>)]] [, .]

rLT~
[SHOW <vector name a>)<T <vector name b>["<legend>"][(<shade/fill

GT options>)]];

[FOR <vector mode> [<vector-name list>]];

[PAGING <vector mode> [<vector list>]].

The USING phrase defines the <vector mode> and the <vector names> which
identify tlb set of numbers to be plotted. The <line options> may be
specified as:

COLOR <color option> 1line option [LINE <line type>

The <color option> identifies the color of the line. If no color is
specified, the current color is used.

The <line option> is used to distinguish differences among the lines on the
graph.

The specified syntax for the <line type> is:

SOLID

LINE DOTTED
DASHED

DOT-DASH

The SHOW option allows the user to show the relationship between two step
functions by shading or color filling between the lines representing the
functions.

The FOR and PAGING phrases are optional. The FOR verb is optional and is used
to explicitly define the x-axis labels. The PAGING verb is used with reports
containing sections or categories. The following is the 1 ntax:

3-106

PAGING <vector mode> [<vector name> ["<legend name>"] [(<shading/color
options>)]

The following examples are provided to clarify the use of the STEP graph.
Figure 3-18 shows a tabular report which will be used in producing the
following STEP graphs. Figure 3-17 shows the results of the command:

D STEP OF "TONS OF MATERIAL" USING COLUMNS X-DAY, Y-PROJECTED (LINE
DASHED).

Figure 3-19 illustrates the use of the SHOW option to highlight where the
PROJECTED and ACTUAL values differ. The command issued was:

D STEP OF "TONS OF MATERIAL" USING COLS X-DAY, Y-PROJECTED, ACTUAL; SHOW
ACTUAL GT PROJECTED; SHOW ACTUAL LT PROJECTED.

3.3.2.7 Gantt Chart. The gantt chart is a time-series chart used to depict
one or more activities for a specific event. Used primarily in logistics
planning to graphically depict deployment of men, units, or material, gantt
charts can also be used as a management tool to show production schedules.

The general form of the syntax for the DISPLAY GANTT command is:

DISPLAY GANTT [CHART] [<y-axis title>] [<x-axis title>] <chart details>. The word CHART may be added to improve readability. The <y-axis title> is
composed as follows:

[OF] [Y-TITLE] " <literal> " [(SIZE <size option> ,COLOR <color option>)]

The "<literal>" contains the text that will be displayed vertically along the
y-axis to inform the viewer of the meaning of the activities labeling the
y-axis. The format for the <x-axis title> is:

X-TTTLE "<literal>" [(SIZE <size option> ,COLOR <color option>)]

The "<literal>" is the text that will be displayed horizontally between the
x-axis labels and the legend which defines the activities being displayed.

The <size option> establishes the size of the text. Valid options are SMALL,
MEDIUM, LARGE, and JUMBO. The default is the current size.

The <color option> identifies the color of the text. If no color is
specified, the current color is used.

The <chart details> define the vector mode to be used to build the gantt
chart. The various <chart options> are preceded by the verbs USING, PLANNED,
ACTUAL, REQUIRED, FOR, and PAGING. The syntax for the use of these verbs is:

3-107

1 OF1

PROJECTED VRS. ACTUAL TONS OF MATERIAL ON HAND BY DAY

DAY PROJECTED ACTUAL

DAY-i 1 500 0

DAY-2 2 500 0

DAY-3 3 500 700

DAY-4 4 500 700

DAY-5 5 500 700

DAY-6 6 1000 900

DAY-7 7 1000 900

DAY-8 8 1000 1200

DAY-9 9 1000 1300

DAY- 10 10 1000 1300

DAY-11 11 1300 1300

DAY-12 12 1300 1600

DAY-13 13 1300 1600

DAY-14 14 1300 1700

DAY-15 15 1300 1700

DAY- 16 16 1800 1700

DAY-17 17 1800 1700

DAY-18 18 1800 1700

DAY- 19 19 1800 1700

DAY- 20 20 1800 1700

Figure 3-18. Step Graph Data

3-1080

"Co

L -j

*C) 0

94-
W4 c

I:--
w~ w

00

'-nIx cc
Z I0

o :3

41C

w4
S.-. '-eO U

w~ w v a.w

43:109

USING <vector mode>
PLANNED - <planned values> [<shade/fill options>]
[, ACTUAL - <actual values> [<shade/fill options>]
[, REQUIRED - <required value> [<shade/fill options>]]
[; FOR <vector mode> [<vector list>] I
[; PAGING <vector mode> [<vector list>]

The USING phrase defines the <vector mode> which identifies the set of numbers
to be plotted. The <vector mode> is the usual ROWS, COLUMNS, SECTIONS or
CATEGORY.

The <planned values> are the actual vector names used to identify the planned
values. The syntax for <planned values> is as follows:

<start vector name> : <end vector name>

The <actual values> are similar to the <planned values> where the syntax would
be as follows:

<start vector name> : <end vector name>

Th- <required value> is a single vector name used to identify a required
value. Currently, this option is reflected on the display as a point-down
triangle and may only utilize the COLOR option.

The FOR and PAGING phrases serve the same function as described for the bar
graph in section 3.3.2.2.

The <shade/fill options> are:

SHADE <shade option>
DENSITY <drnsity options>
FILL <color name>
COLOR <color option>

In order to utilize Gantt charts, the user must first create a tabular report
which contains the data to be displayed and organized in the manner which the

user desires it to be displayed. Refer to section 3.3.1 for more information
on creating tabular reports. When issuing the DISPLAY GANTT statement, the
user specifies which vector mode is to be keyed on for display purposes
through the USING <vector mode> clause. Therefore, in the following Gantt
parameter clause(s), the start and end values specified would be vector-header
names that match the USING clause specification. For example, if a PCS
statement said USING COLS, the vector-header names used to supply data for the
gantt parameters must be column-header names. The following is a sample
tabular report that could be utilized for Gantt charts:

-410

PB PE AB AE REQ

AIR 2 6 1 8 5

SEA 3 7 3 9 6
LAND 4 5 5 10 7

In this example, the rows have been used to denote AIR, SEA, and LAND forces

and the columns have been used to designate the various time increments for
force deployment. These time increments are determined by the user as they

can be hours, days, weeks, or whatevr is applicable to the specific display.

Further, the header names are meaninful as they refer to the data contained
therein: Planned Begin (PB), Planned End (PE), Actual Begin (AB), etc. As is
shown here, both the Gantt PLANNED and ACTUAL clauses require two pieces of

information from the matrix: a starting and ending point. The REQUIRED clause
needs only a single vector for obvious reasons.

Now that the matrix has been generated, we are ready to display the data. The
Gantt chart shown in figure 3-20 was creaLed using the above matrix and the

following PCS statement:

DISPLAY GANTT "TROOP MOVEMENT" (SIZE M,COLOR BLUE) X-TITLE "NUMBER OF WEEKS"

(SIZE M,COLOR RED) USING COLS PLANNED=PB:PE (SHADE UP,DEN LITE), ACT=AB:AE
(SHADE RIGHT,DEN HEAVY), REQ=REQ (COLOR GREEN); FOR ROWS.

3.3.2.8 Pie Charts. Pie charts are similar to bar graphs and line graphs in
that th2y all derive their structure from the row and column values of the
basic tabular report. The pie chart, however, does not contain the familiar x
and y axis; therefore, the syntax structure is somewhat different:

DISPLAY PIE [CHART] [<pie chart label>] [<vector label options>] <chart
details>.

The word CHART may be added to improve readability. The <pie chart label>
produces a textual message at the bottom of the pie chart. Its syntax is

identical to the y-axis label of the bar graph:

OF "<literal>" [(SIZE <size option> ,COLOR <color option>)]

The <size option> establishes the size of the text. Valid options are SMALL,

MEDIUM, LARGE and JUMBO. The default is Lhe current size.

The <color option> establishes the color of the text. If no color is

specified, the current color is used.

The <vector label options> controls the labeling of the pie wedges with the

appropriate vector names. The syntax structure is:

3-111

IC-

VI)

-L I
-L LU4-

- -4

LL~E L C

r- C4

,*** J w,0

ICN

il- h- CD CLOl = w -_

Z3-11

yLOAT
[WITH] VALUE[S] SUPPRESSJ OUTSIDE [LABELS]

SUP PRERES S

K OBLIQUE INSIDE [LABEL
HORIZONTALJ

Observe on figure 3-21 that the pie chart displays the relative percentage
value of each vector element. The percentage values are not found in the

original tabular report, they were calculated automatically by GIPSY from the

values extracted from the report. The WITH VALUE clause enables thf- user to

display the actual matrix values along with the percent equivalent.

GIPSY's default is to display the vector names OUTSIDE of each individual
wedge. The default is to FLOAT these outside labels (i.e., display the label

in the proximity of the wedge). However, the user also has the option to
JUSTIFY the labels so that they all line up with the right or left margins, or
to SUPPRESS the outside labels so that they do not appear.

The placement of vector names INSIDE each wedge applies only to the USING
vector. The inside labels are normally SUPPRESSed; however, the user can

specify HORIZONTAL INSIDE LABELS which will write out the vector name
horizontally, or OBLIQUE INSIDE LABELS which are written out perpendicular to

a radius drawn through the middle of the wedge. If the label does not fit
inside the wedge, it will be suppressed.

. The s-,ntax of <chart details> is similar to that for the other graphs:

USING <vector mode> [<vector name>] ["<legend name>"] [(<pie options>)]

[; FOR <vector mode> [<vector name list>]
[; PAGING <vector modc> [<vector name list>]

The USING verb causes GIPSY to produce a separate wedge of the pie for each
name in the USING vector mode. If the correspcnding FOR vector mode contains
more than one vector name, the USING and FOR vector labels will be displayed
together, separated by a colon " : " (see figure 3-22).

The WEDGE option is a <vector name> detail which will cause the specified
wedge to be set apart from the rest of the pie. More than one section of the

pie can be wedged in a single report. The FILL option will cause the

specified wedge to be filled with the specified color. The SUPPRESS option

will suppress inside labels for the specified wedge.

The <pie options> are:

WEDGE

FILL <color nameiJ
SUPPRESS

3-113

lof
4w4

w0

T

LL~

s-ow

-4

Pie'

w4w

Cl
qbO

404

3-1

cu
in

ccI

-L 4n

La.

<CC

IU6
C CN

C',

I- M

3C-

3-11

The following tabular report was used to produce the pie charts in figures
3-21, 3-22, and 3-23:

JOINT MILITARY
AL 7 3
FL 5 16
GA 4 6
MS 4 4
SC 2 4

Figure 3-21 was produced by the command:

DISPLAY PIE OF "MILITARY AIRFIELDS" USING ROWS; FOR COLUMN MILITARY.

Note that the FOR header label is suppressed if only one vector is used.

Figure 3-22 was produced using:

D PIE USING ROWS.

Note that a separate wedge is formed for each ROW header, which is then
divided up between each COLUMN header.

Figure 3-23 was produced by the statement:

DISPLAY PIE WITH VALUE, JUSTIFY OUTSIDE LABELS,
HORIZONTAL INSIDE, USING ROWS AL,FL(WEDGE),GA,MS,SC.

Note that the FL section is wedged out. Also observe that the integer values
which appear beneath each label is the corresponding element value from the
original tabular report.

3.3.3 Modifying Statistical Reports. GIPSY provides the user the means of
modifying the basic reports discussed in section 3.3.?. This includes
modifying the matrix values, changing default graph parameters, and adding
symbols and text to the graphic report.

3.3.3.1 Matrix Modification. GIPSY provides the user with several basic
commands to modify the values contained in the matrix. This includes the
ability to produce vector totals, accumulate vector values, and to restrict
the number of decimal places displayed. For more extensive modifications of
the matrix; see section 3.3.7, Building a New Report.

3.3.3.1.1 Limiting Rows,. Columns, Sections and Categories. The defaults in
GIPSY are designed to always use all of the users data that may be addressed
by a user specified statpment. Occasionally, it is desirable to limit those
defaults to a smaller subset of the users data. GIPSY provides a mechanism
called LIMIT to perform that function.

3-116

"A L.

LLI -
0-40-

ob

3-4

Snz

ia>

The syntax for the LIMIT statement is:

LIMIT ROWS <list of vector names> [;< element condition>].
COLUNSO.ALL

(CATEGORIESJLSECTIONS

The <list of vector names> referenced above may be a single vector name or a
list of names separated by commas. The list may include ranges in the form:

<first vector desired> THRU <last vector desired>.

ROWS, COLUMNS, CATEGORIES, and SECTIONS identify the vector mode to which the
limit is to apply. TO is an optional noise word added for clarity of the
limit function. The <first vector desired> and <last vector desired> are
defined as the name implies. The THRU operator causes all vectors in between
(inclusive) to be included in the limit. If the last preceded the first they
will be applied in reverse order.

The LIMIT statement limits all system defaults which use the referenced vector
mode to only the named vectors. Another effect of the limit is the effective
reordering of the vectors to the order in which they appear in the LIMIT
statement. The specified limit will remain in effect for all applicable graph
and report statements until it is either changed or a new report is accessed,
or the TRANSFER statement is issued.

A few examples will clarify this. Given this report:

CA CB CC CD CZ CQ ZZ AA
RI 1 2 3 4 5 6 7 8
R2 9 10 11 12 13 14 15 16
R3 17 18 19 20 21 22 23 24
R4 25 26 27 28 29 30 31 32
R5 33 34 35 36 37 38 39 40
R6 41 42 43 44 45 46 47 48

The following statements:

LIMIT ROWS TO RI, R4, R6.
LIMIT COLS TO CC, ZZ THRU CD.
DISPLAY REPORT.

will result in the report:

CC ZZ CQ CZ CD
RI 3 7 6 5 4
R4 27 31 30 29 28
R6 43 47 46 45 44

3-118

Note the effect of the order in which the vectors appear in the report. Since
the THRU pair was specified in reverse order, the vectors how up in the
report in reversed order. Rows R2, R3, and R5 and columns CA, CB, and AA will
not be picked up in any GIPSY display commands unless specifically referenced.
If the vectors were LIMITed or specifically referenced, they will be used;
otherwise, they don't exist for GIPSY. All vectors are always available and
may be re-included by resetting the limit to all vectors. For example:

LIMIT ROWS TO ALL.
LIMIT COLUMNS *.

DISPLAY REPORT.

will produce the original report with which we started. The asterisk is a
synonym for "TO ALL".

The <element condition> is a set of conditions which must be satisfied to have
the associated limit function performed. Its specific syntax is:

IF ANY ELEMENTS <relational operator> <value>

AND ELEMENTS <relational operator> <value>

The statement:

LIMIT ROWS TO ALL IF ANY ELEMENT GT 20.

will cause every row to be included in the report as long as there is at least
one element in that row with a value greater than 20.

The limit functions may be applied to categories and sections in the same
manner as we have illustrated for rows and columns. For example, the
following report could show officer turnover by grade within service for
agencies by fiscal year:

ARMY NAVY USAF
0-1 0-2 0-3 0-4 0-1 0-2 0-3 0-4 0-1 0-2 0-3 0-4

FY80
OJCS 12 10 3 2 10 8 1 2 10 8 6 4
CCTC 14 11 6 3 12 11 7 3 14 12 10 8
DIA 10 9 3 1 10 8 4 6 11 7 5 3
WHCC 8 8 8 8 3 4 5 6 2 4 6 8

FY81
OJCS 13 12 8 6 14 8 4 2 15 13 12 10
CCTC 15 15 12 9 15 7 3 3 14 13 11 12
DIA 12 10 10 9 10 8 4 4 11 9 7 5
WHICC 14 14 14 14 12 6 5 4 10 10 0 8

3-119

We can reduce the report to the FY80 section and NAVY category by issuing the
statemenLs:

LIMIT SECTION TO FY80. LIMIT CATEGORY TO NAVY. DR.

The resulting tabular report would be:

NAVY
0-1 0-2 0-3 0-4

FY80
OJCS 10 8 1 2
CCTC 12 11 7 3
DIA 10 8 4 6
WHCC 3 4 5 6

The interrupt command //LIMIT <vector mode> can be used to list the names of
the vectors currently in the limit.

3.3.3.1.2 Report Totals. Report totals for any of the four vector modes can
be added or removed from the tabular report once the tabular report is built.
The APPEND command is provided to append a total vector as a new vector in the
report. The REMOVE statement is used to delete the totals from the tabular
report.

APPEND COLUMN TOTALS [NAMED <name for total>]
RCATEGORY
SECTION 10

The command APPEND ROW TOTALS will cause GIPSY to add together all the values
in each row to produce a new column of totals. The new column will be given
the name specified on the APPEND command. If the NAMES parameter is not
provided, the name will default to TOTAL. Similarly, column totals will be
appended as a new row; category totals will be added as a new section; and,
section totals will be added as a new category when the appropriate command is

issued. If a vector already exists by the name to be added, GIPSY will notify
you that the vector already exists and that vector mode total will not be
produced. Once the total is added to the report, GIPSY does not distinguish
it from any other vector.

If a vector mode is not specified, all modes currently defined in your tabular
report will be totaled. Note that if a LIMIT command (section 3.3.3.2) is in
effect for any vector mode the totalling action will only be performed for
those vectors specified in the LIMIT. Figure 3-24 contains several examples
appending various totals.

The REMOVE command causes an appended or preexisting total vector to be
deleted. Its structure is identical to the APPEND except that it removes the
total vector rather than adding it. If you named the vector in appending it,
you must also provide that name in removing it.

3-120

DISPLAY REPORT.

CLI CL2 CL3 I OF I
nut 1 a 3Rua 4 S 6

APPEND ROW TOTALS.
DISPLAY REPORT.

I OF I
CLI CL2 CL3 TOTAL

RUt I 2 3 6
Rua 4 5 6 IS

For the cases with SECTIONS and CATEGORIES:
DISPLAY REPORT.

C7T CT2 I OF I

CLI CL2 CL3 CLI CLI CL3$Cl
Awl 1 2 3 1"0 a00 300
RUa 4 6 6 400 s00 60

SCa
olI i0 20 30 100" 2006 3000
RUa 46 50 60 400 So0 6060

APPEND TOTALS.
DISPLAY REPORT.

I OF I
CTI CTI TOTAL

CLI CL CL3 TOTAL CLI CL2 CL3 TOTAL CLI CL2 CL3 TOTAL'CI
Rw 1 1 3 6 160 G 06 30 600 161 362 303 606
Rua 4 6 6 1 466 sea 660 158 464 SMS 6"8 Is1
TOTAL 5 7 9 21 601 700 s0 2166 665 767 963 2121

S a
out is 26 30 6 l60 2000 3060 600 11 2a 3030 6666Rua 44i so 68 MS 400 So1" 6000 1500 49406 06 Soso " sis$
TOTAL SO 74 is all 60e ?6 o Hes 210oe SISI 7670 9499 21210

TOTAL
fu! it 12 33 66 it" a.mo 33ii 66"e tilt 222 3333 6666
Riua 44 6S 66 16S 44"0 SS"e 661 2660 4444 SS 6666 16"S
TOTAL 66 77 so a3l S44e TT7e 9O4 23100 SS$S 7777 9gs9 a333

REMOVE SECTION TOTALS.
DR. .CI CT I OF I

CLI CLa CL3 TOTAL CLI CLI C TOTAL

NAt 1 a 3 1 too a60 300 606
Rum 4 6 6 15 466 t00 600 ISa.
TOTAL 6 7 U 21 M6 766 90 al

nut 1 20 30 60 lo0 a666 300o 60o
&A 44 so 66 1N 4060 s06 6000 1S0
TOTAL 60 7 0 6 711 06 70l 960 210e

TOTAL
nut it 11 33 66 1100 2206 3300 6600
met 44 55 66 165 4400 50e 6600 16S0
TOTAL 5S 7T 9 231 600 7700 3300 23100

Figure 3-24. Appended Totals

3-121

3.3.3.1.3 Vector Sequencing. It is often useful to be able to number your
rows, columns, sections and categories for identification purposes or for
curve, step or gantt graph functions.

CIPSY provides a mechanism for sequencing the vectors using the followiig
syntax:

e EO CATEGORY SEQUENCES [NAMED <new sequence name>]REMOVE) CATENGSORYe>

SECTIONJ

Note that this function uses the APPEND/REMOVE command described for handling
report totals. All syntax and semantics is the same as for the totals except
that it produces/removes a sequence vector.

3.3.3.1.4 Accumulating Vector Values. GIPSY provides the capability of
converting a sequence of vector values into a running total, where each vector
element equals the sum of the previous elements.

The syntax for this capability is:

ROW
ACCUMULATE JCOLUMN<vcolit
DIFFERENCE CATEGORY e

SECTION

;FOR CATEGORYj <vector list>] [;FOR...]

I(S E
CT IO N

The first <vector list> specifies which vector headers will contain the
accumulated values. The FOR option is used to limit the elements which are
involved in the calculations.

The following matrix shows an earnings report for a four month period:

INCOME EXPENSES PROFIT
JAN 3000 2500 500
FEB 2300 3200 -900
MAR 2400 2350 50
APR 5000 3230 1770

By entering the command "ACCUMULATE COLUMNS." the following matrix is
produced. Note that each row is an accumulation of previous rows.

3-122

INCOME EXPENSES PROFIT

JAN 3000 2500 500
FEB 5300 5700 -400
MAR 7700 8050 -350

APR 12700 11280 1420

The command DIFFERENCE has the reverse effect of ACCUMULATE.

3.3.3.1.5 Limiting Number of Decimal Places. GIPSY provides the user with
the capability to limit the number of decimal places to be displayed for

tabular reports, bar graphs, line and point graphs, pie charts, and histograms
by using the SET command.

The syntax of the SET command is:

SET (AD C~ (33
When displaying values on graphs, GIPSY will normally display all of the
decimal places associated with that value. In the case of tabular reports,
each value in a column will contain the same number of decimal places as that

of the longest decimal value.

The optional parameters MAXDEC and FIXDEC allows the standard GIPSY format to
be overridden. MAXDEC <n> declares that no value in the display shall have. more than n digits to the right of the decimal point. GIPSY will continue to
decide for those values which will have less than the specified value of n.

The parameter FIXDEC declares that every entry in the display shall have the

fixed number of decimal places as specified. The command:

SET FIXDEC 0

will cause the entire display to consist of integers regardless of the

fractional parts. Every number will be rounded to the nearest whole number.

The MAXDEC or FIXDEC options remain in effect for the entire GIPSY session
unless they are reset to the normal configuration using the ALL or asterisk

"*" options.

3.3.3.2 Establishing Default Graph Parameters. The DEFAULT command allows

the user to establish default parameters that will be used in place of the

system supplied parameters, when displaying a graph. The command allows the

user to specify colors to be used for fill options or specific shading

patterns for a bar graph, histogram, or Gantt chart or to designate the x and

y axis proportion for a curve or step graph. The syntax for the command is:

(FILL <fill options>
DEFAULT (SHADING <shade options>j

XY proportion

3-123

Each statement is in effect for only the following graph unless a global or
specific LOCK statement is issued (see section 3.3.3.3). An UNLOCK statement
is then required to terminate its use. If the DEFAULT FILL or DEFAULT SHADING
ii; locked, it may be temporarily overridden by specifying the color fill or
shading of each vector individually in a DISPLAY statement.

The various DEFAULT options and the LOCK comman~d are discussed in the
following sections.

3.3.3.2.1 Fill Specifications. In the DEFAULT FILL command, the color names
and the sequence in which the fill colors will be used in displaying a bar
grAph, histogram, step graph or pie chart are identified.
The syntax is:

DEFAULT FILL <color fill list>

where <color fill list> has the format <color i> [, <color 2>]

If there are more vectors to b,! filled than there are color names specified in
the fill list, the list will be recycled.

The default for GIPSY is to have bar or step graphs shaded instead of color
filled.

The SET <graph type> FILL ON coimand (see section 3.3.3.2.5) is required tv
activate the use of the DEFAULT FILL colors.

3.3.3.2.2 Shading Specifications. In the DEFAULT SHADING command the
combinations of shade pattern, density and color to be used to distinguish
each vector in a bar graph, step graph, or histogram are defined. The syntax
is:

DEFAULT SHADING <shade options>

FSHADE <options>]where <shade options> are (IDENSITY <options> |) (<options>),]

[COLOR <color name>

The SHADE options are the same as those available for in-line specification:
LEFT, RIGHT, ACROSS, UP, DOWN, NONE. More thqn one shading direction may be
specified by separating each option with a comma or the word AND. The DENSITY
<option> includes: LIGHT, MEDIUM, HEAVY. The COLOR <color name> defines the
color in which the bar outline and shading will be drawn. A single shading
definition is enclosed in parentheses. The number of shading definitions,
each separated by a comma, is determined by the user. If the number of
vectors to be shaded exceeds the shading definitions, the list of definitions
is recycled.

3-1240

. Use of cha DEFAULT SHADING command in conjunction with the DEFAULT FILL

command can be controlled by the SET <graph type> SHADE command (see section

3.3.3.2.5).

3.3.3.2.3 Proportion Specifica-ions. The DEFAULT X:Y statement is used only
for the curve and step graphs. It allows the user to specify the proportion

between u-its on the x-axis and units on the y-axis. The syntax is:

DEFAULT X:Y - <m:n>

This determines that <m> units on the x-axis will be the same length _ s <n>

units on the y-axis. Both <m> and <n> must be specified; they may be real or

integer constants.

The old proportion command, which produces the same results as the DEFAULT

command, can still be used. The syntax is:

X:Y -<m:n>

3.3.3.3 Preserving User Supplied Defaults. GIPSY provides LOCK/UNLOCK
capabilities foi preserving options of the DEFAULT command, such as FILL,

SHADING, and PROIORTION. The LOCK statement will preserve the last specified

FILL, SHADING, or PROPORTION values and activate them for all subsequent
displays until they are unlocked. In-line commands for the FILL and SHADING

option- will, however, temporarily override any LOCK command in effect.

Subsequent displays will have all options locked that were locked prio . to the

in-line command. When unlocked, GIPSY defaults will apply unless overridden
by temporary graph options or a new LOCK command.

The syntax for this capability is:

PFILL7
LOCK jSHADING

(NLOCK) SHADE
'PROPORTION
L_

All parameters will be locked or unlocked if no options are specified.

Locking more than one parameter requires separate statements such as

LOCK FILL.

LOCK CHADING.

3.3.3.3.1 Control of Fill vs. Shadin . When producing a bar or step graph or

histo?-qm, the default is for GIPSY to differentiate between the bars by using

different shading patterns. Obtaining color filled bars requires user

override of this default. This can be accomplished by in-line FILL optionF in

the DISPLAY '1raph> command, or by using the coramand:

3-125

S{TAT BAR ,fSHADE ,f ONSET AUTO STEP { FILL J N OFF

The default is SHADE ON and FILL OFF. If SET BAR FILL ON is issued, all
subsequent bars will be color filled rather than shaded. The colors will be
obtained from the default color table or from the DEFAULT FILL command, if
supplied. Entering FILL ON followed by SHADE ON will cause the bars to be
both color filled and shaded. Pie charts cannot be shaded; however, automatic
color fill can be controlled by:

SET [AUTO] PIE FILL ONF

3.3.3.3.2 Control of Axis Parameters. The AXIS command provides user control
over various components of the axis.

The syntax of this command is:

SCALE <scale options>
AXIS TIC <tic options>

GTRID <grid options> J

Both the x- and y-axis may be individually defined for the SCALE, TIC, and
GRID options. The y-axis definition is valid for any graph; the x-axis scale

definition only applies to the CURVE and STEP graphs as well as GANTT charts,
and the x-axis TIC and GRID does not apply to bar graphs. If neither the x-
or y-axis is indicated the specified options will be set for both axis.

3.3.3.3.3 Establishing Axis Parameters. GIPSY automatically scales all
graphs to fit the range of the data values being plotted. There are, however,
occasions when it is desirable to manually control the limits and increments
of the axis scaling. The syntax of this command is:

K] oFROM <lower limit>

AXIS SCALE TO <upper limit>{
SBY <increment> J

The y-axis may be scaled for any graph; the x-axis scaling affects the CURVE

and STEP graphs as well as GANTT charts. The effect of the AXIS SCALE command
lasts until the next graph is generated. The specified AXIS SCALE definition

may be preserved to be applied to all appropriate graphs subsequently

generated by issuing a LOCK statement which is discussed in section 3.3.3.3.6

CIPSY will automatically supply defaults for any omitted parameter.

GIPSY automatically scales the y-axis based on the rangc from the minimum d:ita
value to the maximum data value. Consequently, graphs do not necessarily

start from an origin of zero. The AXIS SCALE statement may be used to force
the origin to be zero (or any other value). For example:

3-126

AXIS Y SCALE FROM 0.

will cause the next graph to be generated with y-axis origin of zero. If the

specified y-axis &,ale (from minimum to specified maximum) is not evenly

divisible by the increment, the graph will be drawn up to the specified upper

limit, but no label will be present for the top of the y-axis.

Figure 3-25 was produced by the commands:

AXIS Y SCALE FROM 0 TO 25000 BY 2500.

DISPLAY BAR WITH VALUES USING COLS.

The old SCALE command, which produces the same results as the AXIS SCALE

command, can still be used. The syntax is:

SCALE [Y] AXIS [FROM <lower limit>] [TO <upper limit>] [BY <increment>].

The AXIS SCALE statement is often used in conjunction with the LOCK statement

to produce a set of graphs in which data has differing ranges, but it is

desirable to force all graphs in the set to have the same scaling.

3.3.3.3.4 Adding Tic Marks. The AXIS TIC command will cause the graph axis

to be displayed with user specified tic marks. The syntax for this command

is:

Fxl UTS IDESAXIS TIC <n> INS IDE
NY1 COLOR <color>

The user is able to individually control the tic marks for each axis. Each

axis increment is divided into <n> equal parts. If an increment of 0 is

supplied the system default of no tic marks will be reinstated. Subsequent

displays can retain the same TIC capability by issuing the LOCK TIC command,

discussed in section 3.3.3.3.6. The default OUTSIDE parameter causes the TIC

marks to be drawn on the label side of the axis. The INSIDE parameter causes

the tic marks to be drawn on the data side of the graph. Both may be

specified concurrently. The COLOR parameter can be used to specify the color

of the TIC marks.

Figure 3-26 was produced by the commands:

AXIS Y TIC 5 OUTSIDE, COLOR RED.

AXIS X TIC 10 INSIDE, COLOR BLUE.

3.3.3.3.5 Adding Grid Lines. The AXIS GRID command will cause the specified

grid lines to be drawn perpendicular to the specified axis. The syntax for

this command is:

3-127

mm

nJ wJ

qy - - - - -

-I-

Cuc

00J

o ~to

CD0

.A I V I I I

u

'I,0

M U M a mLAft l L

in Wui = - LA MU m 0- LA WU

34128

-AJ

LA-

LALU

x-
4c

'CV

s-rA
LA.U

I.- '-4

4.4
0

-4

C 1

4c)

cm bo
-4

I.4.

LA m LA eaLA
ru ru 4 q-

3-129

ALGRID IE <line
<n> S WIDTH <width>

[LIN < l ype]L COLOR <color>

Each interval defined by axis labels will be subdivided into <n> increments.
If the command:

AXIS Y GRID 3.

is issued, the y-axis will have 2 grid lines between each label. If the
increment is preceded with a slash "/" the grid occurs every <n> labels. The
command:

AXIS Y GRID /3.

will cause the y-axis to have a grid line once every three labels.

The LINE, WIDTH, and COLOR options give the user the opportunity to choose the
line type, line width and color of the grid lines. Subsequent displays can
retain the same GRID capability by issuing the LOCK GRID command, discussed in
section 3.3.3.3.4.

Figure 3-27 was produced by the commands:

AXIS Y GRID 3 LINE DASHED, COLOR RED.
AXIS X GRID /2 LINE DOTTED, WIDTH 3 COLOR YELLOW.

3.3.3.3.6 Preserving Axis Parameters. GIPSY provides a LOCK/UNLOCK statement
to preserve axis parameters such as SCALE, TIC and GRID. The lock statement
will cause the last specified parameter(s) to be activated for all subsequent
displays, until they are unlocked.

When unlocked, GIPSY defaults will apply unless overridden by temporary graph
options or a new LOCK command. LOCKING or UNLOCKing X- or Y-AXIS (i.e., LOCK
X-AXIS. or LOCK Y-AXIS.) will cause all X or Y AXIS options to be locked or
unlocked.

The syntax for this capability is:

X [AXIS]1 SCALE

LOCK I X-AXIS TIC
UNLOCK Y [AXIS] GRIDi

If LOCK or UNLOCK is specified with no options (i.e., LOCK. or UNLOCK.) all
user specified graph options will either be locked or unlcked.

Locking more than one parameter requires separate GIPSY statements such as:

3-130

-C

L.==

& I I I I I i I .I
=C\ I Ii, , , 4 I , I 4

4 4 4.
\

,I

..........4
CNI4

4 i i I i I . , ,\ , I 4 I ,

C.7.

1 I , , ' . . . 4 i I

4/ I 4 . 4 . . 4 4 I 4 4

:- 4 1411 i * 1

4 , i I I 4 i 4 I , I I I
/ I , ii

, ii i I ii 4 ' 4414 i I

i i I I I ,. . I i | i

, Lb.I i 4 4 , i / 4 I 4 C,

**44i4.4
.4 . I *40

Oll 4 I . I I . 4 I I . .

ab=,
F"

'
I b I • ' ' '

3)

. * I * * 4 4 4 4 4 4 I

4 , * 4 4 I , 4 , , 4 I 4 , I i i

, 4 4 4 1 4 4 i , A ' , . I 4 4

I * ,4 4))4.

4 I , 4 ,4. . 4 I I

a I i . 4 I . 4 I I I .

4 4 4 4 I I i 4 4 44 . I 4 4 I .

* . 4 4 4 I I 4 . 4i
.444I 4 II II I . II I
44414 I - 44 iii 4 I 4 I "' 4 J

*

i 44

3-1.31

LOCK X SCALE.
LOCK X TIC.

3.3.4 Enhancing Statistical Reports. Enhancing reports refers to the ability
to modify or add information to the graph that is not matrix oriented. This
includes the addition of symbols and textual data which can be placed anywhere
on the graph, re-displaying a report or displaying the report without the
graph.

3.3.4.1 Adding Symbol. Symbols may be added to the graphic display in order
to enhance the final report. A symbol is any alphanumeric string up to 132
characters in length. The string may also contain CIPSY special graphic
characters (see section 3.4.2.1). The syntax for this command is:

fIPY SYMBOL) [<symbol name>"

RA3B symbol>" [<symbolptions>]

A typical use of this command would be

DISPLAY SYMBOL "ABC".

Execution of this command will activate the graphic cursor, which the user
would then move to the area on the screen where he wishes to display the
symbol. Depressing the space bar will cause the symbol to be displayed,
placing the lower left corner of the first character at the cursor location.
Depressing an asterisk causes the cursor to remain activated so that the
symbol may be displayed at multiple locations.

The DISPLAY option allows the symbol to be displayed for the current graph
only. The symbols will reappear if the graph is refreshed (see section
3.3.4.3).

The GENERATE option will cause the symbol to be displayed on all subsequent
graphs, even if the graph type is changed. The use of the generated symbols
can be controlled, however, through the use of the LIMIT command:

r NONE
LIMIT SYMBOLS TO

ALL

<list of defined symbols>

where the asterisk "*" is equivalent to ALL.

The <symbol options> provide additional capabilities to be used when
displaying the symbols. They are:

3-132

NAME <symbol name> Attaches a name to the symbol so that it can be
referenced by the LIMIT command.

COLOR <color> Allows the user to specify the color of the

symbol.

SIZE <size option> Allows the user to specify the character size of

the symbol.

CENTER Positions the symbol so that the first character
is centered over the cursor.

If multiple options are used, they must be separated by a comma.

3.3.4.2 Adding Textual Information. Once a GIPSY display has been produced,

it is possible to add blocks/groups of textual information to the graphic
report. This textual information may be predefined when given a name and
later displayed by referencing the name assigned to it. The syntax for this
block structure is as follows:

BUILD TEXT TABLE [(CONTINUED)].
TEXT NAME[D) <name> [(<group options>)]
"<text>" [(<line options>)] [; "<text>"...].

TEXT NAME[D] <name> ...

END.

The command BUILD TEXT TABLE establishes the build mode for the text table.
Using the CONTINUE option will cause new text structures to be added to the
existing text table. Individual blocks/groups of text must be named. There
is no limit on the number of textual groups defined in the table. The command

TEXT NAME[D] establishes the start of text that will be grouped together at
display time. The text <name> must be unique within the TEXT TABLE and may be

up to 12 alphanumeric characters long.

The <group options> are listed below. Individual options are separated with
commas.

BOX[ED] is the system default. All textual information will

have a box drawn around it regardless of the number of
lines associated with it.

NO[T] BOX[ED] will suppress the textual box from being drawn.

LINE <line option> will determine the type of line the textual box will
be drawn in. Line options are SOLID, DOTTED, LDASHED,

DASHED and DOT-DASHED with SOLID being the default.

3-133

WIDTH <n> will determine the width of the line the textual box
will be drawn in. Values are between I and 15.

COLOR <color> identifies the color of the textual box lines and all
text associated with the box. If no color is
specified the current color is used.

SIZE <size option> establishes the size of the textual output. Valid
options are SMALL, MEDIUM, LARGE, and JUMBO. The
default is the current size.

BLANK ED will cause the area within the text box to be color
LING] filled with the background color.

Any <group cption> specified after the declarative TEXT NAME[D] <name>
command establishes the default for all lines of text associated with its
name. Each line of textual input is entered as follows:

"<text>" [(COLOR <color>, SIZE <size option>)] [; "<text>"].

There is no limit, other than terminal constraints, to the number of lines
that can be grouped under one <name>. The use of a semicolon signals
continuation of textual input and the period serves as a terminator for the
current text name. Every line of text can have its own COLOR or SIZE options,
which will override the default values.

The command END terminates the build mode aLkd completes the TEXT TABLE block
structure.

The following is a sample Text Table. Notice that two groups/blocks of text
have been declared: TXT1 and TXT2.

BUILD TEXT TABLE.

TEXT NAMED TXT1 (NOT BOXED, COLOR RED, SIZE SMALL)
"THIS IS TEXTl";
"DEMONSTRATING THE FOLLOWING:";
"THE NOT BOXED OPTION";
"COLOR RED";
"SIZE SMALL FOR ALL TEXT".

TEXT NAMED TXT2 (COLOR BLUE)

"THIS IS TXT2" (SIZE SMALL);

"DEMONSTRATING THE FOLLOWING" (SIZE LARGE);
"DEFAULT FOR BOXED AND BOX LINE TYPE" (SIZE SMALL);
"INDIVIDUAL SIZE OPTION FOR EACH LINE" (SIZE JUMBO);
"COLOR BLUE FOR ALL" (SIZE SMALL).
END.

These textual items can be accessed and displayed after any graphic output.

3-134

The command:

DISPLAY TEXT NAME[D] <name>

will activate the graphic cursor causing graphic cross-hairs to appear on the
screen. Once you have positioned the graphic cursor to the position desired,
depress the space bar. The textual information named in the DISPLAY TEXT
command will be displayed positioning the first character of the first line of
text at the position indicated by the cross hairs. Entering an asterisk "*"
instead of the space bar will. cause the graphic cursor to remain activated,
allowing the user to display the text at multiple locations.

Figures 3-28 through 3-32 demonstrate the above steps.

Textual output produced with the DISPLAY command is just a temporary addition
to the graphic report. Upon entering a new DISPLAY <graph type> command, all
displayed text will disappear. The display can be refreshed, however, by
entering the command DISPLAY (see section 3.3.4.3).

Textual information displayed with the DISPLAY TEXT command may be removed

from the display with the command:

DELETE TEXT NAMED <name>

When the command is used, all occurrences of that text will be eliminated.

The current display can then be refreshed with the command DISPLAY.

3.3.4.3 Graph Refresh Capability. Once a graph has been displayed the user
may wish to alter it. This includes changing colors, modifying the TITLE,
adding TIC marks, adding SYMBOLS, specifying scaling parameters, etc. The
graph can then be redrawn with these new specifications by entering the CIPSY

refresh command:

DISPLAY

or

D.

This command redraws the graph without having to retype the entire graph
display command. The refresh command is not allowed following the BUILD NEW
REPORT, ACCESS, APPEND, REMOVE, LIMIT, ACCUMULATE, DIFFERENCE or TRANSFER

commands.

3.3.4.4 Turning the Graph Off. The user may desire to display a screen with
only text, symbols, title and/or classification without a corresponding graph.

This may be done using the command:

SET DISPLAY (OF

3-135

ww

I--

ob
-4

-u4

3--3

49-

+ 0

4CC)

w

x
LIII

a-a,

w -4

9-13

-J

g

K

9

.8

U

mpw4

3-138

-4

0.

O

~bi

i!

3-138

* -II i-.4

II

us4

E:E

.E-

a

U

w -4"

0

do -4

4J

'-i

00

I C

i--

.4

! -

'CA

3-0

3--3

w

. JX

Ww
u'4

< a~ 4J

0-C4

'--4

3-14

e If DISPLAY is set OFF, subsequent DISPLAY commands will clear the screen and

display existing classification and title lines as well as generated symbols

and text. Additional symbols and text may then be added to the display.

3.3.5 Saving Statistical Reports, The tabular report (matrix) can be saved
from within GIPSY onto a permanent file. Since the tabular report is the

basis for all other statistical reports, the user needs simply to access this

saved report at a later date in order to produce graphic reports.

The tabular report may be saved after the RUN statement by using the command:

RESAVE REPORT [ON] <cat/file string>

The current tabular report is saved to the specified file as a Graphic Data

Set (GDS).

3.3.6 Accessing Saved Reports. GIPSY provides the capability to load a
tabular report, either created by GIPSY in a previous run, or created by a

user application program. The report must have been saved on a file that

GIPSY references as a GDS. GIPSY is directed to access that file with the

ACCESS command. This command is used to access either a new GDS or a specific

report from the current GDS. The syntax for the command is:

GDS cat-file stringC ACCESS (REPORT [<report number>]3

ACCESS GDS <cat-file string> will cause GIPSY to release its access to the

current GDS, if there is one, attach the new specified GDS, and load the first

report on that GDS into memory. ACCESS REPORT will cause the specified report

number to be loaded into memory overlaying the current report that is in

memory. If <report number> is not specified, the last report referenced will

be loaded. This comes in handy if you have destroyed part of the data or if

you simply want to get back to the starting point. ACCESS NEXT simply loads

the next sequential report from a multiple report GDS.

3.3.7 Building a New Report. As previously mentioned, GIPSY provides a very

powerful capability for building, displaying, modifying and enhancing

statistical reports. GIPSY also provides an entire set of commands for

building a new report using or modifying the current report. This feature

begins with the command BUILD NEW REPORT and is terminated with an END NEW

REPORT or simply an END.

The build new report capability would be used to modify the current report for

such things as to convert a record count tabulation into percentages, apply

weighing factors, normalize variables and units of measure, compute

dIfferences and composites, etc. Also, an entirely new report may be built

and displayed without referencing a data base.

3-141

The language for this capability is necessarily a bit complex; however,
information messages are generously distributed throughout the block
structure. They will not appear, however, unless requested by entering a
carriage return when the console is open for any input other than an error
correction. The block structure is initiated by BUILD NEW REPORT and
terminated by END NEW REPORT or END.

Specifically:

BUILD NEW REPORT.
<vector statements>

END NEW REPORT.

The vector statements define the following capabilities:

o ASSIGN assign new rows, columns, sections, or categories to the

current tabular report.

assign new values to an already existing vector or element.

assign new values across the entire tabular report based on
conditional computations using the current tabular report.

o DELETE - delete rows or columns from the report.

o RENAME - rename the rows and columns of the report.

o SUBSET - subset the report and rebuild it.

o CHANGE - change specific entries in the matrix part of the report.

o DEFINE - deletes current vector mode and creates new vector names
for specified vector mode and manually inputs the data
values for a tabular report.

o ADD - appends new vectors to the end of the vectors already in
the tabular report.

o INPUT - supplies data to vectors added via a DEFINE and/or ADD
statement or to change the contents of pre-existing
vectors.

The LIMIT statement can also be used within the BUILD NEW REPORT block
structure. Caution - any LIMIT action is global. Therefore, limits set
inside BUILD NEW REPORT will remain in effect even after ending BUILD NEW
REPORT.

3-142

Whenever a new report function (ASSIGN, SUBSET, CHANGE, etc.) is completed,
the one-word statement "REVIEW." may be entered to obtain a display of the
intermediate results of modifications to the current report. You may then
continue with additional BUILD NEW REPORT functions. REVIEW is essentially a
DISPLAY REPORT that does not require you to leave the BUILD NEW REPORT block
structure. All options available to DISPLAY REPORT are also available to

REVIEW.

3.3.7.1 ASSIGN Function. The ASSIGN statement is used to conditionally, or
unconditionally, calculate new sets of values for entirely new rows or columns
and add them to the report or to recalculate the set of values for a vector
already in the report.

The general format of the ASSIGN block structure is:

ASSIGN [<vector mode>]ASSIN IELEMENTI

[<vector name> - <arithmetic expression>.

[<new vector name> - <arithmetic expression>.]
ELEMENT - <arithmetic expression>.

END [ASSIGNNEW REPORT

Using the <vector mode> with the ASSIGN specifies the type of vector (ROW,
COLUMN, CATEGORY, or SECTION) which is to be assigned. You can mix the vector
modes by respecifying the vector mode prior to assigning a vector value.

ELEMENT qualified the entire data portion of the matrix for modification.
ELEMENT has a special meaning, so its discussion will be deferred until after
we discuss the assignments for the vectors.

The assignment of new values to an already available vector typically consists
of an arithmetic expression to assign data values. A conditional expression
can be optionally appended to control when the assignment occurs.

If a new vector name is specified, the vector name will be assigned to the
vector (ROW or COLUMN) being created. It may consist of any combination of up
to 36 alphanumeric or special characters. If the name includes a special
character it must be enclosed in quotes. Remember, for each vector mode
assigned the associated vector function will occur. For example, if you are
assigning a column, the column function is repeated for every row in the

report.

The <arithmetic expression> consists of vector names connected by any of the
arithmetic operators, specifically the plus sign "+" the minus sign "-" a
comma "," the multiplication sign "*" the division sign "/" an open paren "("

and a close paren ")"

3-143

An ASSIGN END or a simple END statement will terminate the ASSIGN operations
but keep you in the BUILD NEW REPORT block structure. END NEW REPORT will
terminate both the ASSIGN and the BUILD NEW REPORT block structure.

Let's take a moment for a few examples. Given the previously built tabular
report of project strength by service, let's add a new project, D which has
resources that are 10 percent of the sum of all projects, then redistribute 30
percent of C's resources to project A and add the equivalent of 20 percent of
A's adjusted resources to project B:

A B C
ARMY 300 280 800
NAVY 200 400 400
USAF 400 640 200
USMC 600 290 100
USCG 150 300 300

The input commands would be:

BUILD NEW REPORT.
ASSIGN COLUMNS.

D - 0.10*(A + B +C),

A - A + 0.3 * C.
B - B + A * 0.20.

C - C - 0.3*C.
END NEW REPORT.
DISPLAY REPORT.

A B C D
ARMY 540 388 560 138
NAVY 320 464 280 100
USAF 460 732 140 124
USMC 630 416 70 99
USCG 240 348 210 75

Observe that new column D was added to the end of the report and the modified
ones remained where they were. Note also that each statement causes the

matrix to be updated immediately, as evidenced by an updated A being used in
the calculation of B.

The above illustrations show unconditional vector assignments. Let's attach a
condition to one of the assignments. Additionally, let's reduce any service
which has more than 500 personnel on project A to 500 and place the excess in
a new column called OVERHEAD:

BUILD NEW REPORT. ASSIGN COLUMN.
"OVERHEAD" - A - 500; IF A GT 500.

A - 500; IF A GT 500.

ROWS.
TOTAL - ARMY+NAVY+USAF+USMC+USCG.

3-144

COL. TOTAL - A + B + C + D + OVERHEAD.

END NEW REPORT.

1 OF I

A B C D OVERHEAD TOTAL

ARMY 500 388 560 138 40 1488

NAVY 320 464 280 100 0 1064

USAF 460 732 140 124 0 1332

USMC 500 416 70 99 130 1116

USCG ?40 348 210 75 0 79P

TOTAL 2020 2348 1260 536 170 5798

We threw in a row total to show how to switch back and forth between row and

column mode.

A word of caution is in order here; if the vector name (row or column name) is

numeric it must be enclosed in quotes; otherwise, GIPSY will misinterpret it

as a number. Accordingly, if the vector header contains special characters,

including blanks, it must be enclosed in quotes.

The foregoing discussions were limited to vector mode. The last mode is
ELEMENT. When in this mode every element in the matrix is available for

modification, and vector names have no meaning, only numbers and the

descriptor ELEMENT may be used in the arithmetic expression and conditional

expression. For example, if we wanted to reduce every element greater than

450 by 10 percent we would specify:

BUILD NEW REPORT.

ASSIGN ELEMENT.
ELEMENT - ELEMENT - O.10*ELEMENT; IF ELEMENT GT 450.

END ASSIGN.
END.

1 OF 1

A B C

ARMY 300 280 720

NAVY 200 400 400

USAF 400 576 200

USMC 540 290 100

USCG 150 300 300

The END ASSIGN terminates the assignment operation but leaves you in the BUILD

NEW REPORT block to enter additional vector statements.

We mentioned earlier that the LIMIT statement can be used inside the BUILD NEW

REPORT block structure. The following example illustrates the use of the

3-145

LIMIT statement in conjunction with the ASSIGN statement using the current
tabular report: 1

1 OF I

A B C
ARMY 300 280 800
NAVY 200 400 400
USAF 400 640 200
USMC 600 290 100
USCG 150 300 300

Input commands would be:

BNR.
LIMIT COLS * IF ANY ELEMENT GE 600 AND ELEMENT LE 750.
ASSIGN ROW.
TOTAL - ARMY + NAVY + USAF + USMC + USCG
END ASSIGN.
LIMIT COLS TO ALL.
END.
D REPORT.

1 OF I

A B C
ARMY 300 280 800
NAVY 200 400 400
USAF 400 640 200
USMC 600 290 100
USCG 150 300 300
TOTAL 1650 1910 1800

The LIMIT statement must precede the associated ASSIGN statement, because
processing of an ASSIGN statement occurs immediately upon its entry. This
requires that the vector to which the arithmetic result is added must be
identified prior to the arithmetic operation.

3.3.7.2 DELETE Function. The DELETE statement is used to conditionally or
unconditionally eliminate rows and/or columns from the report. The general
form of the statement is:

--COL NY (L <eeetcodto>

DELETE (fC ORYJ <vector name list> [;IF <element condition>].

LSECTION)

The <vector name list> can occur as a list of individual <vector names>
separated by commas, ranges of names, or combinations thereof; specifically:

3-146

<vector name 1>, [<vector name 2> (THRU <vector name n>]
[, <vector names>]

If a range of <vector names> is specified, it is interpreted as an inclusive
range, left to right, in order of appearance in the report.

DELETE causes an immediate and permanent removal of the identified ,,ector from
the report. The conditions which may be attached to the deletion of a row or
column are elemental ones. That is, only the special name ELEMENT may be used
in the conditional expression. Some examples of the DELETE statement are:

BUILD NEW REPORT.
DELETE COL A.
DELETE ROW USAF IF ALL ELEMENTS GT 100.
DELETE COLUMN C IF ANY ELEMENT LT 100.

END.

3.3.7.3 RENAME Function. The RENAME statement is used to assign new vector
names either by replacement of the original name or by addition of a prefix or
suffix to the existing vector header. The format of the RENAME statement is:

RENAME CATEGORY I <rename options>

t ECTION fj

* where <rename options> are of the form:

<vector name 1> <new name 1> [, <vector names> <new names>]

NAMES <ordered list of names>
<vector name 1> THRU <vector name n> PREFIX "<string>"

SUFFIX "<string>"

The <ordered list of names> is a list of new names which will be mapped
one-for-one into the THRU sequence of names. Let's use an example to see if
we can clarify the rename function using our standard report.

Obser-ve the syntax of the RENAME statement and its effect on the vector names:

BNR.
RENAME ROW ARMY ALPHA.
RENAME ROW NAVY BETA.
RENAME ROW USAF GAMMA.
RENAME ROW USMC DELTA.
RENAME ROW USCG EPSILON.
END NEW REPORT.
D REPORT.

3-147

I OF 1

A B C
ALPHA 300 280 800

BETA 200 400 400
GAMMA 400 640 200

DELIA 600 290 100

EPSILON 150 300 300

BNR.
RENAME COLS A THRU C NAMES ABLE, BRAVO, CHARLIE.
RENAME COLS ABLE THRU CHARLIE PREFIX "X-".
END NEW REPORT.

D REPORT.

1 OF 1

X-ABLE X-BRAVO X-CHARLIE
ALPHA 300 280 800
BETA 200 400 400
GAMMA 400 640 200

DELTA 600 290 100

EPSILON 150 300 300

3.3.7.4 SUBSET Function. SUBSET provides the capability to create a subset
of the report by cutting vectors or sequences of vectors from the report,
reordering and pasting them into a new report. It also provides a capability

to calculate new vectors and rename old ones in the subsetting process.
SUBSET is different from ASSIGN in that matrix modifications are deferred

until SUBSET is complete, while ASSIGN dynamically modifies the report. Like

ASSIGN, SUBSET is a block structure bounded by SUBSET... END SUBSET. The

specific syntax is:

SUBSET <vector mode>.
[<vector assignments>.]

[<vector mode>. <vector assignments>.]

END [SUBSET [(NULL)] .

The <vector mode> defines the ROW, COLUMN or SECTION which is candidate for
the SUBSET function.

The format for the <vector assignments> is:

INCLUDE <list of vectors to be included in new report>.

CALCULATE <vector header> - <arithmetic expression>.

The <list of vectors to be included in new report> has the same syntax:

<vector name> [<alternate name>] [,<vector name> [<alternate name]] [,..]

3-148

INCLUDE copies the referenced vectors from the current report to the new one
and renames them if alternate names are supplied. The INCLUDE vectors are
placed in the new report in the order in which they were referenced in the
SUBSET structure. New vector names are not available for use until the SUBSET
block structure is ended. It is then that the defined subset action actually
takes place.

The CALCULATE option is used to calculate new values for the vectors from the
current matrix. The operand(s) in the arithmetic expression can be vector
name(s) or numeric literal(s).

The <arithmetic expression> consists of vector names connected by any of the
arithmetic operators, specifically the plus sign "+", the minus sign "-", a
comma ",", the multiplication sign "*", the division sign "/", an open paren

"(", and a close paren I)I

The END SUBSET with the (NULL) option cancels the SUBSET function currently
lefined.

The END or END SUBSET terminates SUBSET but leaves you in BUILD NEW REPORT to
allow you to continue with additional NEW REPORT operations with the current
report modified by the SUBSET action.

Figure 3-33 shows the report before the following SUBSET commands:

BUILD NEW REPORT.
SUBSET COLS.

INCLUDE AUTHORIZED, ACTUAL, ENLISTED.
CALCULATE PCT-ENLISTED - ENLISTED/ACTUAL*100.
INCLUDE OFFICER.
CALCULATE PCT-OFFICER - OFFICER/ACTUAL*100.

ROWS. INCLUDE AC07 THRU AC03,AD08 THRU AFl9,AC23.
END SUBSET.
END NEW REPORT.
DISPLAY REPORT(COMPRESSED).

Figure 3-34 shows the results after the above NEW REPORT functions.

3.3.7.5 CHANGE Function. The CHANGE statement is used to manipulate specific
matrix elements. The matrix location (i.e., row and column intersection) of
the element is specified by naming the intersecting vectors according to the
following statement format:

CHANGE ROW, COL [[, CAT] [, SEC]
<vector specifications> - <arithmetic expression>.

END.

3-149

LL.
a

U. b

z

.41

w~
Jac CXL .0r OI DW-M MNMO4 .4 V w0M

.44

w &

CLL

.4V~r momg WO

0 00 WU .4 LU .4 CU. . L64U

3-150

#ILm no M A0v- 0 WL " of",

o @
c u Col@ Ch qe 0 A -u-0w

#-w w- 0 W v CD- Lf 0c WWMI U0r

ca J C 00000C
Jr:J

Clii LOS4-
U) dm,.1akowciI wI-

WII4a 0 L

La. W TV
_j c 0* 3; d

zz

U$W%

w

MonL AMJ AMO .b a ow 01 0 M

wk W W kW ~~

CLC

a 0 0 U U C O4 La " UJ"a -4 I. I. N

3-151

The <vector specifications> are in the format:

<vector name 1>, <vector name 2> ([, <vector name 3>j [, <vector name 4>, j

They may be arranged in any order desired. This specifies the order in which
the vector names will be changed. If the matrix is larger than two
dimensions, categories and/or sections must also be specified. The <vector
name> identifies the intersection of vectors containing the data element to be
altered.

The system-defined variable ELEMENT may be used in -he arithmetic expression.
In this context ELEMENT will contain the current value of the matrix element
being referenced.

In the current report:
I OF 1

A B C
ARMY 300 280 720
NAVY 200 400 400
USAF 400 576 200
USMC 540 290 100
USCG 150 300 300

The following CHANGE statements will alter the values of elements at matrix
locations (USMC,A), (USAF,C), and (NAVY,C).

BNR.
CHANGE ROW, COL.
USMC, A - 34 + .10 * 80.
USAF, C - 24 + .10 * 80.
NAVY, C - 14 + .10 * 80.
END.
END NEW REPORT.
D REPORT.

1 OF 1

A B C
ARMY 300 280 800
NAVY 200 400 22
USAF 400 640 32
USMC 42 290 100
USCG 150 300 300

The following CHANGE statement will alter the values of elements at matrix
locations (ARMY,A) and (NAVY,A):

BNR.
CHANGE ROW, COL.

3-152

ARMY, A - ELEMENT * .10.
NAVY, A - 5 - ELEMENT + 20.
END.
END NEW REPORT.

D REPORT.

1 O1 i

A B C
ARMY 30 zb3 800

NAVY -175 400 22
USAF 400 640 32

USMC 42 290 100
USCG 150 300 Z00

3.3.7.6 DEFINE Function. The DEFINE statement is normally used to manually
create a new matrix (tabular report) when the current set of data is no longer

L3cuired or there does not ' °t exist a current report. The syntax is:

vector moce <NAMED> List of new vector names
L'FINE -number of vector names <vector mode> I3

The <vector mode> is either a ROW, COLUMN, CATEGORY or SECTION. The <list of
new vector names> is a series of names to be used as the vector(s) being
created. Each name must be separated from the other with a comma. If the

name contains any special characters, it must be enclosed in quotes.

If the second option is chosen, GIPSY will automatically generate the names.
The names GIPSY will generate consist of the vector mode specified along with
a sequentially incremented integer. Duplicate labels will not be generated.

If a name which would be generated already exists, GIPSY will skip over it.
The <number of "ector names> is an integer constant defining how many vectors
are to be generated. The <vector mode> defines which of the four vector modes

the request applies to.

If we wanted to define a new report to GIPSY the following statements would be
made:

BUILD NEW REPORT.
DEFINE ROWS NAMED ALPHA, BETA, DELTA, GAMMA.

DEFINE 5 COLUMNS.

END.

The results at this point would be:

COLl COL2 COL3 COL4 COL5

ALPHA 0 0 0 0 0

BETA 0 0 0 0 0
DELTA 0 0 0 0 0

GAMMA 0 0 0 0 0

3-153

The first DEFINE statement initiates a matrix and creates the four rows
indicated. The second DEFINE creates the five columns as shown in the above
report. Caution - if you are working with a current report, the first DEFINE
statement will zero out the entire matrix and then replace the rows and
columns as described in the DEFINE statements.

3.3.7.7 ADD Function. The ADD statement should be used if any portion of the
data in an existing tabular report is to be retained. It functions
identically to the DEFINE statement except as noted below. The syntax is:

A vector mode <NAMED> list of new vector names
ADD number of vector names <vector mode>

The following statements would be used to build a report:

BUILD NEW REPORT.
ADD 4 ROWS.
ADD COLUMNS NAMED AUTHORIZED, ACTUAL.

END NEW REPORT.

AUTHORIZED ACTUAL
ROWl 0 0
ROW2 0 0
ROW3 0 0
ROW4 0 0

The ADD statement is not destructive to the current report as the DEFINE
statement is. The ADD will cause the defined vectors to be appended to the
end of the vectors already in the tabular report.

3.3.7.8 INPUT Function. The INPUT statement may be used to supply data to
vectors added via a DEFINE or ADD statement or to change the contents of pre-
existing vectors. Data may be supplied either as a single statement or in
response to detailed prompted input requests. The syntax for the INPUT
statement is:

<vector mode> <value list>
INPUT <vector list>; VALUES[.] ARE ALL <number>

,FOR <vector mode><vector lists> ARE FROM <number> BY
<number>

The <vector mode> defines the mode (ROW, COLUMN, CATEGORY or SECTION) to which
the new data values are to be supplied.

The <vector list> is a list of vector names belonging to the identified vector
mode. Each name must be separated from the other by a comma. A sequential
set of names may be included by use of THRU as defined.

The FOR <vector mode> <vector list>; dictates the order in which the data is
to be specified. It may also be used to limit the scope of the input

3-154

sequence. The INPUT statement may contain up to three vector modes -- one for
each vector mode not already used in the statement. The semicolon is required
to terminate the vector list. The default order of input request is COLUMN,
ROW, CATEGORY, and section. The FOR clause is used to alter this ordering of
data to permit the data to be entered in a manner more suitable to the user's
data requirements.

The command VALUE establishes the start of data to be input as values. If the
end of the statement (period) occurs immediately after the keyword VALUES,
then GIPSY will enter a detailed prompt mode which will ask for the
information by vector. The prompts for input will continue until the all
vectors have been filled. The period is used as a terminator for the prompted
input. The report will be considered complete when a periud is encountered.
Do not attempt to use a period at the end of each prompted input--it will
terminate the input process. The input values must be specified according to
the vector sequence requested; each value must be separated from the other
with a comma. The following example illustrates these features (user-
specified input is preceded by the prompt character ">")"

BUILD NEW REPORT.
DEFINE ROWS NAMED Rl, R2, R3.
DEFINE COLS NAMED A, B, C, D.
INPUT ROW VALUES.
INPUT 4 VALUES FOR ROW Rl.
1, 2, 3, 4
INPUT 4 VALUES FOR ROW R2.
5, 6, 7, 8
INPUT 4 VALUES FOR ROW R3.
9, 0, 0, 12.

END NEW REPORT.
DR.

Note that when all entries in the report have been entered, GIPSY responds
with a standard prompt character ">" rather than input requests prompting.
The resulting report is:

A B C D
RI 1 2 3 4
R2 5 6 7 8
R3 9 0 0 12

If less than a complete vector is to be supplied and the original values in
the vector are to be retained, the CHANGE statement (section 3.3.7.5) should
be used.

The user who is familiar with the storage of data within multi-dimensional
arrays may supply the entire tabular report as the <value list> in the INPUT
statement. The <value list>, if supplied, must consist of a series of numbers
(separated by c~mmas) in the order the data is to be placed in the tabular
report. The default order is to first fill up the column, by supplying a

3-155

value for each row, then by category followed by section.

For example, the statements:

BNR.
DEFINE COLS NAMED A,B,C.
DEFINE ROWS NAMED RI, R2.
DEFINE CATZCORY NAME I, I, III.
DEFINE SECTIONS NAMED S-I, S-II.
INPUT VALUES ARE 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36.
REVIEW.

would result in the report:

I II III
S-I A B C A B C A B C

RI 1 3 5 7 9 11 13 15 17
R2 2 4 6 8 10 12 14 16 18

S-Il
RI 19 21 23 25 27 29 31 33 35
R2 20 22 24 26 28 30 32 34 36

Of course the above report could have been entered more easily by changing the
INPUT VALUES statement to:

INPUT VALUES ARE FROM 1 BY I.

This FROM clause requests GIPSY to load the specified vectors with values
starting at the value following the word FROM and incrementing by the value
following BY for each succeeding entry in the report. This entry of values in
the tabular report is sensitive to the order and selection stipulated in the
FOR clauses.

The clause ARE [ALL] <number> causes each entry in the report to be set to the
value specified by <number>.

The <value list>, the FROM/BY, and the ALL clauses may be applied to selected
vectors or portions of vectors by use of the FOR clause with a vector and/or
vector list to limit the application of the generated or specified values.

For example the statement:

INPUT COL B; FOR SECTION S-If; FOR CAT II; VALUES 98,99.

would change the values 27 and 28 in the report above to 98 and 99
respectively. The statement:

3-156

INPUT ROW RI; FOR SECTIONS FOR CATS

FOR COL B; VALUES ARE FROM 4.5 by 0.5.

would change the values 3, 21, 9, 27, 15, and 33 in the report above to 4.5,

5.0, 5.5, 6.0, 6.5, and 7.0 respectively. Incidentally, column B will now be
displayed as real numbers rather than as integer as before; this was caused by

the inclusion of a non-integer in that column.

I OF I

1 II III

S-I A B C A B C A B C

RI 1 4.5 5 7 5.5 11 13 6.5 17

R2 2 4.0 6 8 10.0 12 14 16.0 18

S-II
Rl 19 5.0 23 25 6.0 29 31 7.0 35

R2 20 22.0 24 26 99.0 30 32 34.0 36

3.3.7.9 REVIEW Statement. Whenever a new report function (ASSIGN, SUBSET,
CHANGE, etc.) is completed, the one-word statement "REVIEW." may be entered to

obtain a display of the intermediate results of modifications to the current

report. You may then continue with additional BUILD NEW REPORT functions.
REVIEW is essentially a DISPLAY REPORT that does not require you to leave the

BUILD NEW REPORT block structure. All options available to DISPLAY REPORT are

also available to review.

3.4 Geographic Displays

The geographic capabilities of GIPSY allow one to display a map of any area of
the world, and to overlay the map with geographically located symbols, tracks,

great circle paths, range circles, and the results of selected geodetic

computations. Political boundaries and topographic details are available upon

command. Commands also exist to minimize or prevent overprinting important

information on the display.

The geographic display may be built using input data from a user's master data

base; it may be interactively built using in-line commands; or, it may be

built using combinations of both of these methods. Once the display is built

it can be manipulated by zooming in or out from any area of the display; it

can be further manipulated by adding or removing displayed detail.

The remainder of section 3.4 is divided into several parts. The first part
describes those commands common to building a display from a data base and
interactively manipulating an already built display (including interactively

building a display from keyboard input). The second part describes the

commands which are unique to building a geographic display from a user data
base. The third part describes the syntax and semantics of those commands

3-157

used to interactively manipulate the map and geographic data displays.

If the display is to be built from a user master data base or a formatted
subset thereof, the command "GIPSY" should be issued followed by the
identification of the data base, the file description, data selection
criteria, geographic data processing criteria (symbols, tracks, etc.), title,
classification and desired map details. After the processing requirements are
specified, the command "RUN" is entered. The file will be queried and the
data structure for the requested geographic display will be built. A prompt
character will be displayed when GIPSY is ready to accept geographic display
commands. (When the commands come from a PCS file, operations will continue
without the prompt until the PCS returns control to the keyboard.) If both
tabular reports (BUILD TABULAR REPORT) and geographic constructs (SYMBOL or
TRACK table) were specified, the management graph/tabular report display mode
will be entered. If the input sequence did not include a tabular report,
GIPSY will transition to the geographic display processing mode automatically.
Transition to the geographic mode is not automatic if tabular reports were
built. The transition is then accomplished by entering the command "GEO."

In those cases where the geographic displays are not built from a data base
(keyboard display commands, DAFC file, etc.) the geographic display command
may be entered directly by using the command GIPSYG (instead of GIPSY).

3.4.1 Geographic Display Definition Statements. All classification, title,
and auxiliary control statements (defined in section 3.2.3.) are applicable to
all geographic functions, except as noted in the discussion of each command.
When building a geographic display there are additional auxiliary control
statements which affect only geographic displays. These commands are
discussed in the following paragraphs; they may be issued when building a
display from a data base and when building a display from the keyboard.

3.4.1.1 Map Definition. The MAP statement is a declarative statement used to
identify the map data base you want to use, the geographic window of the area
for which data will be qualified, and associated map details. The MAP
statement sets up the map parameter for display but does not cause the display
to occur. The DISPLAY statement must be used to display the map and
associated data. The specified map parameters will be used in all displays
unless specifically overridden by another MAP statement. The syntax required
to specify the map definition parameters is:

3-158

F 5
MAP IFILE WORLD

SA
WORLD2)

[WITH <map detail options-]

WINDOW FROM DATA
<lower left coord>, <,ipper right coor>
<area name>
CONTAINS name of areas>

. LC U R R E N T

[COLOR <color name]

[fROJECTION MERCATOR
LAMBERT

L 0

The WITH clause is used to specify the visual, topographic, and political
details associated with the actual map background for the display.

The WINDOW clause is used to describe the approximate geographic limits of the
area to be included in the geographic display. The limits are specified using
coordinates or clear text names which describes the area. The size of the
area specified will be adjusted in either the vertical or horizontal direction
to insure proper proportionality of the display which always fills the screen
area. If no window clause is supplied the entire map will be displayed at the
default level of details.

The COLOR clause is used to provide a default color for any map detail for
which color is not specifically identified.

The PROJECTION parameter stipulates the map projection on which the entire
display is to be based. The default Mercator Cylindrical projection is
recommended for most applications. The Lambert Conic Conformal projection is
far less efficient and has severe limitations in the areas to which it can be
applied.

Each of these clauses will be discussed in detail in subsequent paragraphs.

The GIPSY map display capability is unique in that the apparent resolution of
the map is held virtually constant regardless to the size of area to be
displayed. GIPSY does not process details which would make no noticeable
change in the display. As the area displayed gets smaller finer details are
included in the display resulting in an apparent resolution that is
independent of the size of the display. The display of the map will occur
with the users data when a DISPLAY command is issued. The display of the map
itself may be controlled with the SET statement. The command "SET MAP OFF."

3-159

will preserve all the MAP statement parameters while inhibiting the actual
display of the map. Display status is restored by issuing the command "SET
MAP ON."

3.4.1.1.1 The FILE Clause. This clause specifies the map data base is to be
used to build the background map. WORLD will cause the display to be produced
from a map which contains coasts, islands, major lakes, and international
boundaries. It has a moderate level of topographic detail resolution. The
maps in figures 2-16 through 2-23 were all produced from the WORLD map file.

USA will cause the map to be displayed from a map file which contains a high
level resolution of United States international and state boundaries for the
48 contiguous states as shown in figure 3-35. In figures 3-36 and 3-37, we

zoomed in on the Great Lakes area and the Chesapeake Bay area respectively.

WORLD2 specifies an optional map file which is distributed with GIPSY but may
not be installed at all sites due to large disk space requirements. It has a
very high level resolution and contains many political and topographic
details. These details (defined in table 3-1) are included on the display
when identified in the WITH clause as <map detail options>. WORLD2 has
approximately 60 times as much information as WORLD but it takes only slightly
longer to display the additional detail. In some cases, however, a display
from WORLD2 is noticeably faster than one with the smaller WORLD map.

Once a map file has been activated it need not be respecified with each
issuance of the MAP statement. If no MAP FILE option is specified the last
MAP FILE option specified will be used. If not specified the default of WORLD
will be used.

3.4.1.1.2 The WITH Clause. This clause is used to specify political or
topographic detail and associated display attributes. However, these options
are defined only when FILE WORLD2 is used. The <map detail options> are
composed of any number of items from table 3-1; each item may have a line type
and color associated with it. Specifically, <map detail options> may be
defined as:

WITH <detail> [([COLOR <color>], [LINE TYPE <line type>])]

where <detail> is any item selected from table 3-1.

This phrase (and its options in parentheses) may be repeated for each detail
selected from table 3-1. If a WITH clause is not specified, NORMAL (from
table 3-1) is assumed.

Color, line type, and width specifications are not order-dependent. If more
than one option is specified, the clauses should be separated by a comma. As
many map details and associated options as desired may be specified; each
phrase should be separated by a comma.

The specification color may be replaced by RED, BLUE, GREEN, BLACK or any

3-160

-4

'.4

3-161

-4

0

CL

.C;l

0

E
0
0

cn

.4

3-162

0.

w Za,

L.J44c 0

IA&. 30 0
£ 0

CL N

4E~14

44
0

"a4

3-163

Table 3-1. WORLD2 Political and Topographic Map Details (Part 1 of 2)

Each major heading option will qualify the subordinates below it. All
subordinate options may be selected individually.

ADMIN (administrative RAILROADS
boundaries) BROAD GAUGE RAILROADS

STANDARD GAUGE RAILROADS
ALL (all map details) NARROW GAUGE RAILROADS

UNDIFFERENTIATED RAILROADS
BOUNDARIES

COUNTRY BOUNDARIES REEFS
DELIMITED BOUNDARIES
DISPUTED BOUNDARIES RIVERS
INDEFINITE BOUNDARIES PERMANENT MAJOR RIVERS
OTHER BOUNDARIES ADDITIONAL MAJOR RIVERS

ADDITIONAL RIVERS
CANALS MINOR RIVERS

IRRIGATION CANALS DOUBLE-LINED RIVERS
LESSER CANALS INTERMITTENT MAJOR RIVERS
MAJOR CANALS INTERMITTENT RIVERS

COAST INTERMITTENT RIVERS
INTERMITTENT MAJOR RIVERS

GLACIERS INTERMITTENT MINOR RIVERS
INTERMITTENT RIVERS

ICE SHELVES
MAJOR ICE SHELVES MAJOR RIVERS
MINOR ICE SHELVES PERMANENT MAJOR RIVERS

ADDITIONAL MAJOR RIVERS
ISLANDS (see note 1) DOUBLE-LINED RIVERS

MAJOR ISLANDS INTERMITTENT MAJOR RIVERS
MEDIUM ISLANDS
MINOR ISLANDS PERMANENT MAJOR RIVERS

PERMANENT MAJOR RIVERS
LAKES (see note 1) DOUBLE-LINED RIVERS

MAJOR LAKES
MEDIUM LAKES ROADS (see note 3)
MINOR LAKES MAJOR HIGHWAYS

MAIN ROADS
MAJOR FEATURES (See note 2) GRAVEL ROADS

UNSURFACED ROADS

NORMAL TRAILS
COASTS
BOUNDARIES SALT PANS

MAJOR SALT PANS
MINOR SALT PANS

STATES (U.S. State and Canada
Province Boundaries)

3-164

Table 3-1. WORLD2 Politital and Topographic Map Details (Part 2 of 2)

Note 1: Both islands and lakes will appear if either ISLANDS or LAKES details
are specified.

Note 2: MAJOR FEATURES will display all map details except the following:
INTERMITTENT RIVERS, INTERMITTENT MINOR RIVERS, MINOR RIVERS, ADDITIONAL
RIVERS, GRAVEL ROADS, UNSURFACED ROADS, and TRAILS. Since less details are
drawn, maps with "MAJOR FEATURES" will be displayed on the terminal screen
much faster than maps with "ALL".

Note 3: Road data is not available and will not be displayed for the
following: Greenland, Iceland, Canada, U.S., Mexico, Caribbean Islands,
southern Brazil, Bolivia, Paraguay, Uruguay, Chile, Argentina, Finland,
Norway, Sweden, Indonesia, Papua-New Guinea, Australia, New Zealand, and
islands in the Pacific Ocean.

3-165

color defined in the terminal description applied at your site. Color names
and their associated definitions are terminal dependent and defined for each
device individually. See section 3.2.3.17 for a more detailed discussion of
color capabilities.

The <line type> item dictates t-at the specified detail Niill be drawn with the
selected line type. If not specified, solid lines will be used. Options and
the lines produced are:

SOLID
DOTTED
D A S H E D

DOT-DASH

LDASH

3.4.1.1.3 The WINDOW Clause. The WINDOW clause is used to desctibe the
geogra-,aic limits of the area to be included in the display. These limits may
be described by specifying actual geographic coordinates to identify the lower
left and upper right corner of the area to be displayed.

Alternatively, the limits may be described by specifying the name or list of
names of the area to be included in the display, or by allowing GIPSY to
figure out what the window should be by looking at the data. The area
actually displayed will be automatically extended if needed and scaled to the
size of the view surface.

GIPSY will compute the smallest area that includes all your data points if the
WINDOW clause is WINDOW FROM DATA.

The "<lower left coord>, <upper right coord>" defines a pair of geographic
coordinates in one of the standard coordinate forms. The standard coordinate
forms are:

DDHDDDH
DDMMHDDDMMH
DDMMSSHDDDMMSSH

where the D's represent numeric degree digits, the M's represent rumeric
minute digits, the S's represent numeric second digits, and the H's represent
appropriate hemispheres. The leftmost s t of letters represents latitude
values and the rightmost defines longitude values. The hemF'shere associated
with the latitude is N for North and S for South; on longitude i.t is E for
East and W for West. This definition of a geographic coordinate is applied
throughout the system in the same manner, Any reference to a cocrdinate
accepts these coordinate forms.

The window may be visualized by extending the meridian of the lower left
coordinates northward to intersect the parallel of the uppec right coordinate;
the parallel of the lower left coordinate is evtendee to the right to

3-166

intersect the meridian of -he upper right coordinate. The rectangular area
contained within these lines will be contained within the display area.

The <area name> option allows a user defined name associated with a coordinate
pair or the politicpl name of a geographic area to be used in lieu of
specifying geographic coordinates. This name of an area is referred to as an
<area name> in the syntax definition of the statement. Appendix H lists the
names of all the areas which are predefined by GIPSY. You may specify
additional area names or override GIPSY predefined names by defining those
names in a window table (discussed in section 3.4.1.2). When using Appendix H,
you may use either the WINDOW NAME or the COUNTRY-CODE eitry. Any area name
which contains special characters or blanks must be enclosed in quotes.

The maps in figures 3-35, 3-36, and 3-37 were generated using the following
map statements, respectively:

MAP FILE USA, WINDOW 184610N1282700W, 512027N0665529W.
DISPLAY MAP.
MAP WINDOW = MICHIGAN.

DISPLAY MAP.
MAP WINDOW VIRGINIA, FILE USA.
DISPLAY MAP.

The DISPLAY commard shown here will be discussed in detail later. For now, we
will limit it to the minimum required to illustrate discussed commands. The
first example established the map data base as the USA map data base;
subsequent MAP statements do not require a FILE clause since the first
statement has established che desired map. Note, however, that the FILE
clause may be respecified at any time. The first illustration also shows the
use of geographic coordinates to define the window. An <area name> from
Appendix H could have been used to produce the same display (i.e., figure 3-35
could have been produced with):

MAP FILE USA, WINDOW "UNITED STATES".
DISPLAY MAP.

In some cases it is convenient to describe the window by listing the names of
areas and locations which are contained within the desired display area. The
CONTAINS clause permits this method of describing a window. The <names of
areas> in the syntax may be comprised of any combination of area names from
Appendix H or location names from Appendix I or any validly defined name which
associates a coordinate or pair of coordinates to a name (discussed in
sections 3.4.1.2 and 3.4.1.3).

A map of the eastern half of the United States would be produced under the
foll(wing map definition:

MAP WINDOW CONTAINS "KEY WEST", CHICAGO, MAINE, TAMPA.

In this case, the extreme parallels and meridians defined by this set of names

3-167

would be used to produce the rectangular window which contains these three
locations and one area.

Note that location names and area names are mixed in the same statement. In
this case, the right edge of the display will be dictated by the easternmost
portion of Maine, the left edge of the display by Chicago, the bottom by Key
West, and the top by Maine. These limits may be further expanded to produce a
display in the required proportions.

If the window is defined as a point (i.e., a <location name> is supplied as
the window), a one degree by one degree area around that point will be used as
the window.

"WINDOW CURRENT" and "WINDOW *" are special forms which take the geographic
limits of the display currently on the screen as the new window. The limits
of the display currently on the screen may be different from that in the map
definition if the user has zoomed in on a particular area or if the user has
temporarily displayed an area different from the MAP WINDOW specification.

3.4.1.1.4 The COLOR Clause. This clause dictates the color to be used for
all map details not specifically colored. The <color name> is the same as
defined previously in section 3.4.1.1.2.

3.4.1.1.5 The PROJECTION Clause. The Mercator Cylindrical projection is
GIPSY's default map projection because the entire world (except for polar
regions) can be displayed using this projection. The Lambert Conic Conformal
projection also is available; however, the user must assume responsibility to
assure that no attempt is made to display a map area inappropriate for a 0
Lambert projection. A complete discussion on map projections is provided in
Appendix F.

Observe the results shown in figure 3-38 from the following map statement:

MAP FILE WORLD2, WINDOW CONTAINS VIRGINIA, MARYLAND;
WITH COAST (LINE TYPE DOTTED), STATES (LINE SOLID)
AND MAJOR RIVERS (LINE DASHED) AND LAKES (LINE DOT).
DISPLAY MAP.

Note that items of a list are separated by commas; lists or clauses are
separated by semicolons.

3.4.1.2 Area Names. Names may be assigned to define an area via a block
structure called a WINDOW TABLE. The WINDOW TABLE allows the user to assign a
pair of coordinates to a user specified name augmenting or overriding Appendix
H. The name may be subsequently used in other statements. The syntax for
this block structure is:

3-168

--- 4

c-4

0 0

00

3-169

WINDOW TABLE.
<area name> - <lower left coord>, <upper right coord>,

END.

The user generated <area name> may be up to 24 characters in length, the first
character of which must be alphabetic. If the name contains any special
character (e.g., blank, period, etc.) other than a hyphen it must be enclosed
in quotes. It may be enclosed in quotes at any time. There is no limit to
the number of elements included in a WINDOW TABLE. However, search time and
memory requirements become excessive when the table contains more than 200 to
250 names. The WINDOW TABLE may be saved as a separate PCS file that is
brought in as required.

If only one area name is to be defined, an abbreviated form may be used to
associate the name with the coordinate of an area. The syntax is:

WINDOW <area name> - <lower left coord>, <upper right coord>.

This statement has the effect of a WINDOW TABLE defining one name.

The WINDOW TABLE or its abbreviated form is not to be confused with the WINDOW
clause of the MAP statement. The WINDOW TABLE and its abbreviation merely
associate a name with a pair of coordinates and allow that name to be used in
place of the coordinates. If the WINDOW TABLE contains a name that is the
same as a name in GIPSY's reference file for area names, the WINDOW TABLE name
will override the GIPSY name. This condition is assumed to be deliberately
generated, hence it does not generate an error message.

Observe the following examples of WINDOW TABLEs:

WINDOW TABLE.
ARKANSAS - 330006N0943734W, 363005N0893944W.
MISSOURI - 35N096W, 41NO89W.
OKLAHOMA - 3338N10301W, 3700N09426W.

END.

WINDOW "UNITED STATES" - 24N76W, 55NI26W.

These names appear in Appendix H; however, the coordinates specified here will
be used since any user specified name overrides the default name assignments.

Note that different coordinate formats can be used within a single coordinate
table. However, different coordinate formats cannot be mixed within a single
definition. Leading zeroes are required when they appear in a coordinate
field.

3-170

.3.4.1.3 Location Names. Names may be assigned to the coordinates of a
location via a LOCATION TABLE. The LOCATION TABLE is a block structure
directly parallel to the window table discussed in section 3.4.1.2. Names
defined in a LOCATION TABLE augment the location names in Appendix I. The
syntax for the LOCATION TABLE is:

LOCATION TABLE.

<user generated name> - <geographic coordinate>.

END.

The abbreviated form is:

LOCATION <user generated name> - <geographic coordinate>.

3.4.1.4 Geographic Display Control. There are several features in a
geographic display the user may want to control. These factors are controlled
by the SET statement. These SET options are discussed here because they are
unique to geographic displays. These capabilities augment those discussed
earlier in section 3.2.3.5.

The additional SET command syntax is:

*(1) SET GRI (O) _

ROTECTI OFF

(2) SET PROTECTED <display item> ON

(3) SET PROTECT AREA <area name>,
<coordinate pairs>,
CONTAINS [<area names>,

C N coordinate pairs

*

OFF

ON

(4) SET VISIBLE <resolution factor>.

(5) SET MAP RATIO t LOATING
(STPAght> [HIGH] BY <width> [WIDE]

SET MAP ON or OFF determines whether the background map will be displayed.
Display time can be saved if one sets map display off so that only data will

3-171

appear on the display. To cause the map to be reactivated, simply issue:

SET MAP ON.
DISPLAY.

to have map detail restored to the display.

If a grid has been specified, SET GRID OFF prevents the display of the grid on
all subsequent displays until a SET GRID ON command has been issued; SET GRID
ON allows the normal display of the grid.

GIPSY has the capability to protect portions of the display from being
overprinted. This protection (the details of which will be discussed) can be
turned on and off with the SET command. The overprint protection is not
absolute. The display area will be searched to locate and identify an area
which does not contain protected details. If none can be found, the text will
be plotted at its original location.

SET PROTECTION ON (or OFF) turns the entire protection capability on (or off).

SET PROTECT display items ON (or OFF) controls the protection of specific
elements of the display. The display items which can be specified are
discussed below.

MAP requests all map background materials to be protected from first text,
then offset lines and list boxes.

LINES request GIPSY to minimize interference caused by offset lines generated
by the protection capability (e.g. offset pointers).

TRACKS request that GIPSY minimize interference with user data represented as
tracks.

CIRCLES request protection of geographic circles created by a DISPLAY or
GENERATE command (to be discussed later) where possible.

SET PROJECT AREA <area options> allows the user to list specific areas of the
map to be protected. The <area options> are listed below.

<area names> from the window table may be protected. Any number of areas may
be listed, separated by commas or blanks. Only those areas named will be
protected, while intervening areas will remain unprotected.

<coordinate pairs> specifying the lower left and upper right corners of an
area may also be listed. Each coordinate pair is treated the same as the area
names described above.

CONTAINS [<area names> and/or <coordinate pairs>] allows the user to specify a
single area to be protected by listing area names and/or coordinate pairs
within the protection area. A singly protection area will be defined which

3-172

contains all area names/coordinate pairs listed.

CURRENT or * defines the area to be protected as the area which is currently
being displayed; i.e., the current map window.

OFF/ON sets protection off or on for all protection areas. If set off, the
defined protection areas remain defined but protection will not take place.
If SET PROTECT AREA ON is specified, areas previously protected but set off
will again be protected.

Examples of usage of these options will be included in the discussions on
displaying geographic reports. As mentioned previously, GIPSY adjusts the
resolution of the displayed map according to the scale of the window being
displayed. With the SET VISIBLE command the user can control this feature.
The resolution factor is a numeric value zero or greater. A value of 1 gives
the default resolution. Greater than 1 gives less resolution, whereas less
than 1 will produce a map with
greater detail. Even a resolution factor of 0 however, will not give more
detail if the resolution of the terminal is the limiting factor.

The size of the rectangular box which surrounds the geographic display is
normally set by GIPSY, the ratio of the height to width being a fixed value.
The displayed map will, therefore, contain the specified window along with any
area needed to fill the box. If SET MAP RATIO FLOATING is specified, the box
will automatically adjust so that only the defined window is displayed. The
size of the box can also be fixed by specifying the <height> BY <width>
ratio; however, the map will probably be distorted.

3.4.1.5 Geographic Grids. GIPSY provides a mechanism for generating a
geographic frame of reference for the display. This frame of reference we call
a grid, hence the GRID statement. This statement can cause labeled meridians
and parallels to be generated, either automatically or via detailed user
specification of the grid linqs.

The syntax for the statement is:

SIZE <size option>
5

COLOR <color option> I
GRID LINE <line option> J

STARTING AT <lower left coordinate> 0
LINCREMENT BY <grid intervals> J

If the statement is terminated after the imperative GRID, the system will
calculate a grid to insure that at least two meridians and parallels will be
displayed within the viewing area. When using this option, the grid lines are
automatically recalculated when the viewing area changes or the scale of the
display changes.

If STARTING AT <lower left coordinate> is specified, that point will become
the origin of a user-specified grid with grid lines stepped off to the right

03-173

and up from this point. This coordinate follows the standard coordinate
format. The grid increment defines the desired spacing between grid lines.
It is specified in degrees and minutes. For example:

GRID STARTING AT 24N125W INCREMENTING BY 0130.

will cause a grid line to be drawn every one and a half degrees from 24N125W
to the right edge and top edge of the screen.

Size for the grid labels, line types, and color may be optionally specified on
the GRID statement. If not specified, the size and color will default to the
current settings and line type will default ta a dotted line.

In almost every case it is adequate to simply enter the one word command:

GRID.

3.4.2 Data Base Geographic Displays. The capability to issue statements
instructing the system to build a geographic display from a user's
pre-existing file is one of the most powerful features of GIPSY. That
pre-existing file can be the user's master data base, a subset of a larger
file saved from some retrieval or data management process, output from some
modeling or simulation process, a card image file, etc. In any case, the FILE
statement is used to identify the file; the FDT statement is used to provide a
description of the file; and, the classification, title and auxiliary function
statements may be used to establish other operating parameters. Then a symbol
table or track table from this section may be used in conjunction with the
statements in section 3.4.1 to build a geographic display from a data base.

Displays built from the user's data base consist of symbol or track plots
possibly augmented by classification, title, grids, etc. Detailed discussions
on symbol plots and track plots follow.

3.4.2.1 Symbol Plots. A symbol plot is a geographic display with graphic
symbols, text, or geographic circles overlayed on a geographic frame of
reference. The user's data file must contain at least the coordinate at which
a symbol is to be plotted, and information used as the symbol, or to be used
in assigning a symbol to the coordinate location.

GIPSY must be told which field contains the coordinates for a symbol
definition. A default field can be established with the following syntax:

SYMBOL COORDINATE - <fieldname>.

where <fieldname> must be a reference to a coordinate type field of any legal
length. Any symbol definition in the symbol table which does not define a
symbol coordinate field will use this field.

Symbols (including text) to be plotted at a location are provided via a block
structure called a SYMBOL TABLE. The SYMBOL TABLE provides the symbols,

3-174

. display options, and definition of conditions under which the symbol
definition is to be acted upon. The body of the SYMBOL TABLE may be made
of two classes of symbols -- textual (and enhanced textual) and circles.
These classes will be discussed in detail as we discuss the semantics of the
SYMBOL TABLE. The syntax for this block structure is:

SYMBOL TABLE [CONTINUED] [(<symbol options>)].

symbol [<symbol options>]
[IF <conditional expression>]

\CIRCLE RADIUS <radius> <units>

END.

The block structure declarative, SYMBOL TABLE, may contain a number of options
to serve as defaults and symbol display controls. This same set of <symbol
options> is available with each symbol definition.

The CONTINUED option allows a previously specified SYMBOL TABLE to be reopened
to add new definitions without affecting the existing definition. New <symbol
options> on a CONTINUED SYMBOL TABLE only affect the new definitions. The
<symbol options> may appear either on the SYMBOL TABLE statement or on the
individual definitions.

Any <symbol option> appearing on the SYMBOL TABLE statement applies to all
subordinate symbol definitions. If the same or a conflicting option appears
on a subordinate symbol definition, the option specified on the subordinate
symbol definition takes precedence over that specified on the SYMBOL TABLE
statements. In effect, the options specified on the SYMBOL TABLE statement
establish the default options for the entire symbol table. The <symbol
options> may contain any number of the following:

SIZE <size options>
COLOR <color name>
PROTECT
GROUP SEPARATELY
NOT GROUPED
CENTER
MARKER'
NAME <symbol entry name>
LINE <line type>
COORDINATE - <fieldname>

BLANKING

The options must be enclosed in parentheses if they appear on the SYMBOL TABLE
statement. Options should be separated by commas.

SIZE <size option> indicates that symbols are to be displayed using the
character size specified by <size option>. JUMBO, LARGE, MEDIUM, SMALL as

3-175

previously defined are the valid <size options>.

COLOR <color name> identifies the name of the color to be used in displaying
the symbol.

PROTECT requests that the symbols be protected from overprint by other
symbols. GIPSY will search for an unused space to write the symbol or text
and reserve that space so that no other symbol can overprint it. If no unused
space is found the information is displayed at the location defined by its
coordinate. Symbols with exactly the same coordinate locations (i.e.,
collocated symbols) will be collected, protected, and displayed as a single
list. A box will be drawn around each list of collocated symbols. When
symbols are relocated away from their coordinate locations, lines are drawn
from the symbols to the point where the data represented by the symbol should
have been plotted. GIPSY will attempt to avoid drawing crossing lines and to
avoid crossing through other symbols.

GROUP SEPARATELY will cause collocated symbols from different symbol
definitions to be collected in separate lists for protection purposes. The
grouping default is to collect all collocated symbols in a single list even
though the symbols come from separate symbol definitions.

NOT GROUPED prevents all grouping of symbols, i.e. no lists of collocated
symbols are built; each symbol is individually protected if PROTECT is
specified.

CENTER dictates that the symbol will be plotted such that the first character
is centered over the point representing the symbol's coordinate. If CENTER is
not specified, the symbol is plotted such that the lower left corner of the
character space represents the location specified by the symbols' coordinate.
Don't try to center and protect the same symbol.

MARKER designates that the subject symbol is used as a location marker and is
not to be relocated for PROTECT purposes. The MARKER symbols will not be
protected from write through by other symbols.

NAME <symbol entry name> allows the user to assign a name to the symbol
definition in order to be able to subsequently reference the definition. If
not specified the name will default to symbol .

LINE TYPE <line type> directs that relocation lines and list collector lines
be drawn with the type of line specified following LINE TYPE. The values for
line type are the same as described previously in the MAP statement
discussion (section 3.4.1.1).

COORD - <fieldname> allows a temporary override of the SYMBOL COORDINATE
statement. This mechanism in effect allows each symbol definition to have a
different coordinate field definition.

An unlimited number of symbols may be defined in a symbol table. However,

3-176

. only one symbol table can be defined. Any subsequent symbol table will
totally replace any existing symbol table, except when CONTINUED is specified
on the SYMBOL TABLE statement.

The body of the symbol table has two types of symbol definitions -- symbols
composed of BCD characters including special GIPSY graphic characters (i.e.,
symbols) and symbols defined as geographic circles (i.e., circles) with a user
specified radius.

In the first form of the symbol definition, <symbol> may be a fieldname whose
content will be plotted as a symbol or it may be a literal enclosed in quotes.
A literal is limited to a maximum of 12 characters. The content of the field
may be up to 132 characters in length. Several special GIPSY graphic
characters have been defined to augment the textual character set. The
character embedded in a literal " " (string in quotes) is paired with the
character following it to identify a special GIPSY graphic character (GGC).

The characters currently defined are:

\A + \C \ E \G

\B * \D \F \H

See section 3.4.2.1.1 for a discussion on how to define your own special
graphic characters.

0 The string \CIRCLE (not in quotes) specifically identifies a geographic circle
as the symbol to be plotted. A geographic circle is a circle drawn on the
surface of the earth. Geographic circles may not appear as a true plane
circle when plotted on the map. Each point on the circle is processed through
the projection algorithm of the specified projection. This insures that the
area enclosed by the circle represents the area within that defined radius on
the surface of the earth. A plane drawn circle does not have that property.
Note the variations in the size and shape of the geographic circle in
figure 3-39, although they all have the same radius. The appearance of the
geographic circle is very much dependent upon the latitude and projection.

The radius of the circle can be stated directly in the statement or extracted
from the data base; the <radius> must be an integer value or a fieldname of a
data field containing an integer value. The <units> may be one of the
following abbreviations:

NM -- Nautical miles
MI -- Statute miles
KM -- Kilometer
M -- Meters

All of the <symbol options> discussed earlier are applicable to either the
symbol or CIRCLE definition. Any optional parameter not specified in the

0 3-177

N ON

,Mimip

0-44

cu W6c
at

:0

1' 0

3-178

definition will default to the value assigned on the SYMBOL TABLE statement if
they were specified there. Otherwise, the current character size will be
used, no protection will be performed, solid lines will be used and the symbol
definition name will be blank (i.e., ").

The IF clause allows a condition to be defined and to describe when that
symbol definition will be acted upon. The conditional. expression has the same

syntax and semantics as described in the retrieval section except that this
conditional expression must be separated from any information following it by
a semicolon. The conditional expression dictates that the symbol is to be
plotted only when the condition is met. If no condition is specified, every
record in the QDF is qualified for that symbol. There is no limit to the
complexity of individual conditional expressions. There is no limit to the
number of symbol definition statements which can be specified in the symbol
table.

As an example, let's define a symbol table which will plot the location of
military airfields and Navy ships. We also want to display the name and

runway length of each airfield, and the name and hull number of each ship.

Assuming that this information is in our data file and that the FDT has these
fields defined, the following statements will produce the desired display:

SYMBOL TABLE (COORD=LOCATION, PROTECT, SIZE M).
"*" NAME LOC, MARKER, CENTER, SIZE L.

NAME.

LENGTH IF TYPE = AFD.
HULL-NUMBER IF TYPE=SHIP.

END.
MAP FILE WORLD2, WINDOW CONTAINS FLORIDA, C-BH.
MAP WITH COAST, BOUNDARIES, STATES (LINE DOT-DASH).
SET PROTECT MAP ON.

The result is illustrated in figure 3-40.

3.4.2.1.1 User-Defined Graphic Characters. GIPSY provides a capability to
define graphic characters which will replace and/or augment the GIPSY graphic

characters ("\A" thru "\H") that were discussed in section 3.4.2.1. Graphic
characters are described to GIPSY with a series of moves and draws and

accessed utilizing the "<character>" notation. Up to 61 graphic characters
can be defined to GIPSY at one time utilizing numeric, alphanumeric and
special characters. Graphic characters are described in a 12 by 15 grid,
where the x-axis is 00-12 and the y-axis 00-15. The point of origin, 00,00,
is the lower left corner of the grid. A move to 0000 is assumed at the start
if each character definition. The DEFINE character syntax is as follows:

DEFINE CHARACTER "<single character>" MOVE <xxyy> .

CHAR M
DRAW
D

3-179

ILI
xa

'71

40

ww
41J

LA- We
-SS-

W0

t I'.4

4.,-

hi

3-180

OVE <xxyy>

The <single character> can be numeric, alphanumeric or a special character.

The <xx> value range is between 00-12 and the <yy> range between 00-15.

Therefore if you wanted to draw to x location of 11 and y location of 15 you
would specify either DRAW 1115 or D 1115.

The following illustrates how a single charac'-: is developed from sketching

stage to actual GIPSY output.

rough sketch

*
sketch on graph paper

1000 DEFINE CHARACTER "\T"

1010 D 0015, D 1115, D 1111, D 0606,
1020 D 1200, D 1205, D 0700, D 1200,

1030 M 080r, D 1204, GIPSY commands

1040 M 0900, D 1203,
1050 M 1000, D 1202,

1060 M 1100, D 1201.

3-181

An additional feature of this capability is the ability to string character
definitions together. This is especially useful when you need a wide symbol.
The following example illustrates how characters are defined individually but
"strung together" at display time.

~' IImL:Wi rough sketch

ff-. Udotted line indicates how

this character will be
* .divided into 3 parts and

£ described as three

.. individual characters

I I

I I

Diagram -Part 1

1000 DEFINE CHAR "\U"
1010 M 1200, D 0900, D 0703, D 0203,
1020 D 0005, D 1205, M 0406, D 0208, GIPSY commands
1030 D 0308, D 0407, D 0507, D 0608, for Part 1
1040 D 0708, D 0807, D 0907, D 0906,
1050 D 0406.

3-182 0

Diagram -Part 2

1060 DEFINE CHAR "\V"
1070 D 1200, M 0005, D 1205, M 0605, GIPSY commands
1080 D 0607, D 1207, D 1209, D 0809, for Part 2
1090 D 0807, M 0909, D 0910, D 1011,
1100 D 1109.

Diagram - Part 3

1110 DEFINE CHAR "\W"
1120 D 0200, D 0705, D 0005, M 0205,
1230 D 0207, D 0007, M 0608, D 0410,
1240 D 0510, D 0609, D 0709, D 0810, GIPSY commands
1250 D 0910, D 1009, D 1109, D 1108, for Part 3
1260 D 0608.

DISPLAY SYMBOL '\U\U\Ul SIZE JUMBO.
Actual Display command

4t and end result.

3-183

The last display command demonstrates what is meant by "stringing" characters
together. The helicopter carrier was displayed by referencing "\" characters
U, V, and W.

GIPSY's default special characters stored in "\" characters A-1i can be
overwritten simply by defining new characters and restoring those characters
in the predefined locations.

3.4.2.2 Building a Track Plot. A track in GIPSY is defined as a series of
geographic coordinates connected in succession by a straight line or Great
Circle segments. If we were to draw lines connecting each reported position
of the aircraft AIR FORCE i to the next reported position, the result would be
a track of AIR FORCE 1. The movement of any type of unit, ship, ground unit,
or aircraft is very effectively shown as a track.

The syntax of the track table is very similar to that of the symbol table;
however, there is a significant difference in the semantics. Like the symbol
table the track table is a block structure bounded by the declarative TRACK
TABLE and the terminator END.

Specifically,

TRACK TABLE [CONTINUED] [(<track options>)].

<track identifier> [<track options>] [IF <condition expression>]

END.

The CONTINUED option allows a previously specified track table to be reopened
and new definitions appended to the end of the table.

The <track options> are similar to the <symbol options> on the symbol table.
In fact in both syntax and semantics the <symbol options> are a proper subset
of <track options>. The options are:

LINE <line type> LOCATION
WIDTH <line width> SIZE <size option>
DIRECTED ON POINT COLOR <color name>

TRACK PROTECT
GREAT CIRCLE GROUP SEPARATELY
DISTANCE NOT GROUPED
CUMULATIVE DISTANCE NAME <track name>
TOTAL DISTANCE MARKER
AZIMUTH COORDINATE - <fieldname>

The words used to activate the options, for the most part, describe the
functions to be performed. They are:

3-184

LINE <line type> describes the type of line to be used for relocation lines,
the box around a protected list, and a geographic track. This option uses
<line type> as previously defined in section 3.4.1.1.

DIRECTED specifies that an arrowhead is to be drawn as a direction of movement
indicator; DIRECTED ON POINT causes the direction indicator to be displayed at
each point; DIRECTED ON TRACK will cause the indicator to be displayed at the
end of the completed track.

GREAT CIRCLE specifies that the points on the track are to be connected by
great circle paths.

DISTANCE specifies that the distance between each point is to be displayed at
the point.

CUMULATIVE DISTANCE specifies that the cumulative distance from the start of
the track is to be displayed at each point.

TOTAL DISTANCE specifies that the total distance from the start of the track
is to be displayed at the end of each track.

AZIMUTH specifies that the azimuth from one point to the next is to be
displayed (at the start point of each segment of the track).

LOCATION specifies that the coordinate location of each point be displayed.

SIZE <size option> specifies the character size to be used for textual output
associated with the track. Character sizes for <size options> defined
previously apply.

COLOR <color name> specifies the color to be used in drawing the track and all
information associated with the track. The <color name> parameter is the same
as discussed on the MAP Statement in section 3.4.1.1.

PROTECT requests that all text associated with the track (e.g., azimuth,
distance, etc,) be protected from overprint as described in the symbol
protection discussion (section 3.4.2.1). Additionally, the track itself will
be protected from overprint if possible. It will not be relocated.

GROUP SEPARATELY requests all protected collocated textual information
belonging to different track definitions to be grouped in separate lists for
protection purposes. The default is to protect all collocated information in
a single list regardless of its definition.

NOT GROUPED prevents the grouping of all collocated textual information for
protection purposes.

NAME <track name> specifies that the text string following the key word NAME
is to be used as a label to refer to the defined track at some later time. If
not specified the <track name> will default to track identifier

3-185

MARKER specifies that the track labels be written at the track point and not
be protected.

COORDINATE <fieldname> identifies the field which contains the coordinate data
to be used with the current track definition. If this parameter appears on a
TRACK TABLE statement, the specified field becomes the default coordinate when
one is not specified on the individual definitions.

The individual track options should be separated by commas. Any number of the
options may be specified. There is no required order. If conflicting or
ambiguous options are specified, the last one specified will be used if
possible.

On the individual track definitions, the <track identifier> can be either a
literal value enclosed in quotes or a field name. Each track definition
statement in the track table defines one or more tracks. If a literal value
is used as an identifier, one track will be generated. If the track
identifier is a field name, then the content of that field is the actual track
identifier and all data records occurring in sequence which have identical
contents in the track identifier field comprise a single track. When the
field contents change, a new track is established. A conditional expression
may be included in the track definition to qualify data for the track. If a
conditional expression is attached to a track, the conditions must be
satisfied before the record will be considered for inclusion within the track.
If any track option occurs after the conditional expression, the conditional
expression must be terminated by a semicolon.

Note that if a literal is used as a track identifier with a conditional
expression, data records from anywhere in the file will be pulled together as
a single track. On the opposite extreme, when we use a field name as a track
identifier with no condition attached, a new track will be generated each time
the contents of the track identifier field changes.

The sequence in which the points are connected depends upon the order of the
data records comprising the tracks and the conditions attached to the
definition.

The following example shows a track table which will take a series of ship
positions and produce a plot showing the ship's movement. The result is shown
in figure)-41.

TRACK TABLE (COORD-LOCATION, PROTECT, SIZE L).
NAME DIRECT ON POINT, DISTANCE,LINE DASHED; IF TYPE=SHIP.

END.

Whenever the contents of field NAME changes (and the conditional expression is
met) a new track is started. Each subsequent QDF record that has the same
ship name in field NAME will add another leg to the track. The SORT statement
(section 4.2) can be used to produce a QDF with records in the order required
to produce the tracks (e.g., SORT ON NAME, DATE.).

3-186

- - * - .3z %
* %%K%

ChI

I PD 0

chq ~0

IL 1- 41U

% %
-LL. I lo

ww

0;)

3-187

3.4.2.3 Synthesizing the Geographic Data. Once all the specifications for
building the geographic displays are specified, the data selection and
synthesis are initiated by the command RUN. This will cause the user data
file to be read and the data structures for the geographic display to be
built.
When complete, the user is automatically placed in the geographic mode
(GEOMOD) to accept commands which will DISPLAY the map.

Let us take the symbol plot and track plot of figures 3-37 and 3-38 and
produce a report containing both symbols and tracks. The complete set of
GIPSY commands needed to accomplish this is shown below, with the result
illustrated in figure 3-42:

FILE 8371DPX0/GIPDEV/ALAN/UM-DATA
FDT 8371DPXO/GIPDEV/ALAN/UM-FDT
SYMBOL TABLE(COORD-LOCATION, PROTECT, SIZE M).

"*" NAME LOC, MARKER, CENTER, SIZE L; IF NAME COMPLETE.

NAME IF TYPE-AFD.
LENGTH IF TYPE-AFD.
HULL-NUMBER IF TYPE = SHIP AND NAME COMPLETE.
DATE IF DATE NE .

END.
RUN

MAP FILE WORLD2; WINDOW CONTAINS FLORIDA, C-BH;
WITH NORMAL, STATES(LINE DOT-DASH).

SET PROTECT MAP ON.
SET PROTECT TRACKS ON.
TITLE (SIZE L) "SELECTED AIRFIELDS AND SHIPS";

(SIZE L) "(SYMBOL AND TRACK PLOT)".
CLASS UZZ.

DISPLAY MAP.

3.4.3 Maps and Data Displays. The interactive geographic display mode is
entered by one of three ways: (I) by specifying GIPSYG as the GIPSY execution
command, (2) by building a symbol table or a track table (as discussed in
section 3.4.2), and then entering a RUN command or, (3) by transferring to the
geographic display mode from some other mode via the TRANSFER command.

When in this mode, any GIPSY statement other than those associated with data
file allocation (section 3.7.4), file description (section 3.2.5), data
alteration (section 3.2.6 through 3.2.11) and tabular reports and graphs
(section 3.3) may be entered. Note that symbol/track tables may be specified
in this mode. However, only fields previously referenced are available.

This section will discuss the syntax and semantics of displaying a geographic
display built from a user data base, of building and displaying a new display
from keyboard inputs or adding to a data base display, and manipulating the
current geographic display.

3-188

OWN e 4

-4

C14

I #

U) 0

* 0

4'-4

I.-

uC

1

0

4

J..

3-189

3.4.3.1 Viewing the Display. In order to display the map and associated user

data the following command must be issued:

DISPLAY [MAP [<map statement options>]].

If the command issued was "DISPLAY." (i.e., MAP options not included) the
current display is refreshed on the screen with all temporary and permanent
modifications integrated into the display. Protected information will be
readjusted if required. When MAP is added to the command (i.e., DISPLAY MAP)
the display is refreshed with all temporary modifications deleted from the
display. A temporary modification is any modification to the display
definition or attributes produced by a DISPLAY or a ZOOM command.

The <map statement options> may be added to the above statement to produce a
temporary modification to the map parameters (as specified or defaulted) on
the MAP statement. Any options appearing on the MAP statement definition
(section 3.4.1.1) may be used on the DISPLAY MAP statement.

3.4.3.2 Interactive Display Building and Modification. The user can use the
keyboard and graphic cursors to add any information to the display which can
be specified in a symbol or track table. These modifications to the display
may be temporary or permanent. Temporary modifications can be redefined to be
permanent.

Track, symbols, geographic circles, coordinates of specified locations,
azimuth, and computed distances can be added to the display using the general
form

RDISPLAY <display details and specific options>
i. GENERATE

Information added with DISPLAY is eliminated when a DISPLAY MAP is issued.
Information added or referenced with a GENERATE is kept. Display details and
specific options are discussed in detail below.

3.4.3.2.1 Adding Tracks. Tracks may be added to the display using the
following syntax:

4{DISPLAY TRC FO <location>
GENERATE +

TO { <location> }

<track options>

NAMED <list of track entry names> 0

The <location> may be a coordinate or a name from the location table, the

3-190

. window table or Appendix H or I. The phrases FROM <location> TO <location>
define the end points of a track to be added to the geographic display. If
the TO phrase is omitted or <location> is replaced by a + (for cursor) the
graphic cursors will be activated to allow "TO" locations to be specified via
the graphic cursor. The cursor must be positioned to the desired location and
a character must be entered to signify to GIPSY to read the cursor location.
The track will be plotted immediately from the "FROM" location TO the graphic
cursor. The "*" (and shift "*") has been designated as a continuation
character. Hence GIPSY will reactivate the cursor for more "TO" values until
some other character is entered. The last "TO" value will be treated as the
new "FROM" value. This will allow the user to specify a track with as many
points as he desires. If FROM location is not specified or location is
replaced by a "+", the first cursor location specified by the user will be
treated as the "FROM" value. It follows then that if neither FROM nor TO is
specified the user is expected to use the graphic cursor to identify all the
points on the track.

The track options recognized here are the same as those described in the track
table discussion in section 3.4.2.2.

The track on figure 3-43 was produced using the command:

DISPLAY TRACK DIRECTED ON POINT, CUMUATIVE DISTANCE,PROTECT,SIZE M.

The track was then displayed using the activated graphics cursor.

The requested overprint protection may leave something to be desired because
we added tracks to a completed display which can conflict with information
already protected on the display. By using a simple:

DISPLAY.

GIPSY will redisplay the current display and redo the print protection to
accommodate the added details. If we issue a DISPLAY MAP command now those
tracks will be eliminated... lost forever.

The NAMED clause on the DISPLAY or GENERATE statement is used to recall
previously created tracks. All tracks identified in the list of <track entry
names> but not on the display (because it was previously excluded) will be
added to the display. When DISPLAY is used identified tracks are temporarily
added to the display; when GENERATE is used they are permanently added to the
display. If a GENERATE statement is used with a temporary track or set of
tracks, the track or set of tracks will be made permanent.

The temporary track named TRKDl created in the foregoing illustration may be
preserved by issuing the statement:

GENERATE TRACK NAMED TRKDI.

3-191

~eI IfU

w-w
us ctU

OF .0

zn j
w mi

or 06

tun)
.n

CA w

/ a

C44

3-192

. A cleaned up display is produced by:

DISPLAY MAP.

Since we didn't save the Great Circle track from San Francisco to Georgia it
was lost. It could have been saved by generating the track named " " (all
blanks) prior to issuing the DISPLAY MAP command.

3.4.3.2.2 Adding Symbols. Symbols may be added to the display with the
following syntax:

DISPLAY I1 "YBL <symbol>" [AT <location>] [<symbol options>] ~
GENERATE SYMBOL NAMED <list of defined symbols>

The character string following the word SYMBOL specified by <symbol> will be
plotted on the display at the specified location. The item <symbol> may be an
alphanumeric string up to 132 characters in length. However, the literal must
all appear on a single input line. The string of characters may contain any
of the special GIPSY graphic characters (A, B, C, etc.).

The AT phrase defines the location at which <symbol> will be plotted. The
location may be a coordinate or name from the location table, window table,
Appendix H or Appendix I. If an area name is used, the geographic center of
the area will be used as the location. If <location> is not specified or is
replaced by "+", the graphic cursor will be activated for the location of the
symbol. The cursor must be positioned to the desired location and a character
must be entered to notify GIPSY to read the cursor location. The "*" is used
as a continuation to specify multiple locations as was described for adding
tracks. The circle labels on figure 3-43 were produced by:

DISPLAY SYMBOL " lOONM".

DISPLAY SYMBOL " 200NM".

The <symbol options> recognized here are the same as those described in the
SYMBOL TABLE discussion in section 3.2.2.2.

The NAMED clause on the DISPLAY symbol or GENERATE symbol statement is used to
recall previously created sets of symbols. All sets of symbols identified in
the list of symbol entry names (but not currently displayed because it was
previously excluded) will be added to the display. When DISPLAY is used the
symbols are temporarily added to the display; when GENERATED is used they are
permanently added to the display. If GENERATE is used with temporary symbols
(i.e., previously defined on a DISPLAY STATEMENT) those symbols will be made
permanent.

3.4.3.2.3 Adding Circles. Geographic circles may be added to the display
with the syntax:

3-193

(DISL[YFI(RADIUSI<radius><units> (AT <location>] [<symblENERATE CIRCLE ptions>] NAMED <list of defined circle>

DISPLAY and GENERATE causes the created circle to be temporary or permanent as
described in adding tracks and symbols. In fact, the DISPLAY or GENERATE
circle is treated as a symbol with the additional requirement for radils of
the circle. The <radius> must be specified as an integer value. The units
must be:

NM for nautical miles,
MI for statute miles,
KM for kilometers, or
M for meters.

The <location> following AT designates the geographic center of the circle.
The location may be a coordinate or a name from the location table, window
table, appendix H or appendix I. If a <window name> is used the geographic
center of the area will be used as the location. If this clause is omitted
the graphic cursor will be activated for the center of the circle. The user
then repositions the cursor to the desired location and specifies the location
by transmitting a character. If the transmitted character was an asterisk (or
shift asterisk) the circle will be drawn and the cursor will be reactivated
for another location. When any other character is transmitted GIPSY proceeds
to the next command without reactivating the cursor. If the RADIUS option is
also omitted, the graphic cursor will be activated twice-7e first time for
the center of the circle, the second time for a point on the circle's
circumference.

The <symbol options> are the same as those described in the SYMBOL TABLE in
section 3.4.2.1.

The circles on figure 3-43 were produted by issuing the following commands:

DISPLAY CIRCLE RADIUS 10ONM.
DISPLAY CIRCLE RADIUS 200NM, LINE DOTTED.

3.4.3.2.4 Adding Geodetic Information. The coordinate value for locations,
the azimuth from one point to another, and distances from a point to one or
more other points can be added to an existing display. The syntax for DISPLAY
and GENERATE commands for these Geodetic computations and display is

rISPLAY LOCATION SIZE <size option> 5
GENERATE) AZIMUTH COLOR <color names>

2 DISTANCE (LINE <line type>
| CUMULATIVE DISTANCE PROTECT
ITOTAL DISTANCE) GROUPED

GROUPED SEPARATELY
NAME <name to be assigned> 0

3-194

. The parameters specified here are defined in the discussion of track options
(section 3.4.2.2).

In fact, this command is processed as a track creation in which the track is
not drawn. Note that the geodetic computations are the same as those in tne
track options.

All functions which affect or control the display of track information affect
the geodetic information a- belonging to an invisible track.

3.4.3.2.5 Changing the Viewed Area. The area of the world shown on the
display may be altered by changing the map window or by zooming in or out from
the current displayed area. The viewed area may be permanently changed by
resetting MAP WINDOW on a MAP statement. The viewing area may be temporarily
changed by displaying the " P ith a DISPLAY MAP statement containir.g a WINDOW
clause (see section 3.4.3.') or it may be changed by zooming in or out from a
current display. The latter is accomplished with the ZOOM command.

£he ZOOM -ommand allows yoi, to pick any area of the display and zoom in on it
for a more detailed look at the subject area or allows you to zoom out from a
designated area to pull in a larger area at the price of less distinction
among the details.

Consequently, additional rap detail will be added to the display as a smaller
geographic area fill7 up the display; detail will be deleted as a larger
geographic area fi-Is up the display. Overprint protection will be
automatically recalculated to maintain the objective of the protection.

The syntax of the command is:

IIW lower left coordinate>, <upper right coordinate>

ZO]OF.oordinate of new center> [BY] factor>ATl <aknificati,)n factor> <anfcto at

There are several ways of performing a 7oom operation: by using the cursor to
define the area to be zoomed in on; by specifying the coordi.iates of a
rectangle defining the aree to be zoomed in on; by specifying a new desired
center point and a magnification factor, etc The words IN, OUT and BY
can be added to the command for riadability but have no effect a type of
zoom performed.

If the state-ent contains no optional clauses GIPSY will activate , e cursor
twice, once for the lower left and once for the upper right corner. The
coordinates (on the AT phrase) may be used u specify the opposite corners of
the rectangle. (On the Textronix 4014-1 the graphic cursor is a very thir
line running the lengtmi of the screen in both vertical and horizontal
directions. Thumb wheels Ere used to position the graphic cursor and the
spaue oar is used to transml. -he iocation.) Since the horizontal and
vertical lines of the graphic cuIZoL ra,, define two sides of the resired

3-195

rectangle, two cursor positions are required to define the four sides of the
area. For example, if the statement

ZOOM.

is entered, the graphic cursor will appear on the screen. You must use the
cursor to the desired location and hit the space bar. GIPSY acknowledges by
drawing dashed lines across and down the screen at the entered cursor
location; then the cursor reappears to allow the opposite corner of the
rectangle to be specified in a similar manner. After this is done, the area
within the dashed rectangle is adjusted and rescaled to fill up the screen.
(Additional map detail will be included in the display to insure a full
display for rectangles which do not fit the screen as specified.) The screen
is cleared (if AUTO COPY is on, a copy will be made first) and the described
area and associated data is displayed.

Alternately, coordinates of the lower left and upper right corners of the
desired area could have been specified. In this case no cursors or dashed
lines will appear. The area will be immediately rescaled to fit the specified
rectangle. For example:

ZOOM IN AT 442315N1253320W, 480000N0950000W.

The second method of accomplishing a zoom requires a specification of the new
center of the display and a magnification factor. This option is very useful
in recentering the display over a particular area of interest. The new center
of the display may be specified either with the graphic cursor or from the
keyboard by specifying the actual coordinates of the display. For example:

ZOOM AT 2430N12600W BY 1.5.

If the BY clause is omitted GIPSY will prompt you for it. The magnification
factor may be either integer or floating point; it may be negative or unsigned
(positive). A magnification factor of 1.0 causes the display to be reproduced
at the same scale but with a new center; between 0 and 1 produces a
proportionately smaller scale (i.e., larger area--zoom out); greater than 1
produces a proportionately larger scale (zoom in). Negative numbers cause a
zoom out just as fractional numbers (between 0 and 1) do, only these
proportions may be easier to follow.

The cursor can be used to specify the center point in two ways. First,
specifically ask for it by specifying a "+" as the coordinate of the new
center of the display (e.g., ZOOM AT + BY -3.0).

The graphic cursor will be automatically activated to allow you to specify the
center of the zoom area. Similar results can be achieved by omitting the AT
clause in entirety:

ZOOM BY 0.333.

3-196

A ZOOM may increase the amount of user data displayed beyond that presented in
the original display (i.e., a ZOOM can be used to expand the map window on
user data in conjunction with an expansion on the map area). However, the
ZOOM does not add data that was not referenced or qualified.

Be sure to include a period to end the sentence or GIPSY will respond with a
prompt character to request more input.

3.4.3.2.6 Limiting the Data Displayed. When all the data that was used to
produce a display is on the screen at once, clutter can be a problem. The
clutter can be reduced by restricting the number of QDF records displayed (see
section 3.4.4), or by limiting the amount of information displayed for each
record. A LIMIT statement is available to allow the user to specify exactly
which information subsets are to be included in the display. A LIMIT
statement has been provided to allow the specification of exactly which subset
of data is to be included in the display. The LIMIT statement operates on the
three basic sets of geographic information--symbols, tracks and circles. The

syntax for the statement is:

LIMIT fTRACKS [o t
CIRCLESJLCIRCESJ <subsets of data names>

The list of subset of data names referenced above may be a single data name
and/or a range of names in the form:

<first subset data name desired> THRU <last subset data name desired>

SYMBOLS, TRACKS, or CIRCLES define the respective set of information to be
limited. NONE indicates that no information from the specified set will be
displayed. The statement

LIMIT SYMBOLS TO NONE.

will preclude any symbol from appearing on the display until another LIMIT
statement overrides this request:

LIMIT SYMBOLS TO ALL.

will allow all symbols to be displayed. The "*" means the same as "TO ALL".

The <names of subsets of data> is a list of names assigned in the symbol or
track table definitions or assigned on a DISPLAY or GENERATE statement. Each
name in the list should be separated by a comma. The first subset data name
desired and the last subset data name dcsired are defined as the name implies.
The THRU operator causes all names in between (inclusive) to be included in
the limit.

A subset that is not displayed because it has been limited out may be forcibly

3-197

displayed by specifically requesting it on a DISPLAY or GENERATE statement. A
specific display request temporarily adds the identified subset to the limit
definition.

3.4.3.2.7 Listing the Display Data. It is often desirable to obtain a
printed listing of the retrieved data which is contained in the QDF. This is
normally accomplished with the QUALIFY and PRINT commands (section 4.1.2).

The LIST command, however, allows the user to graphically select which records
are to be listed. The syntax is:

(SIZE <size option>) 4

LIST NAME "<name>" J
FIELDS <fieldname>,..

WITHIN CIRCLE <circle name> 0

Two sets of graphic cursors will be made available to bracket the area from
which all data items will be listed. The graphic cursors are used identically
to the ZOOM when specifying a rectangle around the area of interest.

The fields of all data records associated with points within the defined
rectangle will be displayed on the terminal. If the FIELDS option is used,
only the contents of the specified field names will be listed; otherwise, all
QDT fields will be displayed.

If the WITHIN CIRCLE clause is used, CIPSY will list those records which fall
within a previously defined and named circle. No graphi,. cursor will appear.

The NAME clause will append the specified <name> to the top of each listing
when used in conjunction with the EXTRACT command.

The EXTRACT command allows the output of the LIST command to be written to a
sequential file. The syntax is:

(1) EXTRACT [LIST] ON <cat/file string>.

(2) EXTRACT {ON}OFF

Once the EXTRACT output file has been specified, all LIST commands will
automatically be written to that file as well as to the screen. Each new
listing will be appended to the previous listing. The NAME clause in the LIST
command can be used to give each listing a separate header. The command "

EXTRACT OFF." will suspend writing to the file, whereas "EXTRACT ON" will
cause it to resume.

3.4.3.2.8 Adding Textual Information. Once a geographic report has been
produced, it is possible to add blocks/group of textual information. This is
accomplished by using the TEXT commands previously discussed in section
3.3.3.3.10. All of the capabilities discussed in that section are available

3-198

for use in the geographic module.

3.4.4 Secondary Data Retrieval. The creation of geographic displays for
command and control must be an interactive process. This includes being able
to dynamically alter the selection of data to build the display. (Of course
you can always restart the query and alter the RETRIEVE from the data file.)
This capability is necessary if you wish to qualify a subset of the data
already retrieved for display. GIPSY provides a QUALIFY statement to select
portions of the data from the already retrieved data (i.e., a secondary
retrieval). The syntax for the secondary retrieval is:

QUALIFY { [IFALL <conditional expression> }

Only the data which meets the criteria specified in the <conditional
expression> will be used in building the geographic display. Unlike the
RETRIEVE statement, this statement does not actually eliminate the data. It
simply causes GIPSY to ignore any data record which does not meet the QUALIFY
conditions. You may alter the effect of a QUALIFY statement simply by issuing
another QUALIFY statement.

This capability allows you to retrieve a subset of data to meet a large set of
conditions that selectively produce displays by QUALIFYing a subset of the
data needed for that particular geographic display.

The keyword IF is optional and is added only for clarity and readability.
Recall that the definition of <conditional expression> (section 3.2.6) can
consist of logic names from a logic table, logical data fields, etc. These
can be used to create readily entered and readily understood QUALIFY
statements.

If we had a retrieval which retrieved all the ships in a given area, we could
use the LOGIC TABLE defined in section 3.2.7 to perform complex data
screening, with a simple and easy to understand QUALIFY statement.

The statement:

QUALIFY COMBAT6FLT.

will make available only combat ships in the 6th Fleet. This would normally
ts followed by one or more display commands to display the resulting data. If
we wanted everything but combat ships in the 6th Fleet we would enter:

QUALIFY NOT COMBAT6FLT.

To obtain noncombat ships and all submarines we might enter:

QUALIFY NOT COMBAT OR ANAME (1/1) EQ "S".

3-199

3.5 GIPSY Lanauage Mode Transition

The GIPSY user enters commands or statements in three distinct modes. These
modes are commonly referred to as (1) SYNTAX - the retrieval and processing
specification mode; (2) GEOMOD - the geographic display building mode; and (3)
DISPLA - the tabular report and graph display mode. GIPSY provides a limited
capability for transition from one of these modes to another. The command for

accomplishing this is the TRANSFER command. Its syntax is:

SYNTAX
TRANSFER TO DISPLAY

TGEOMOD!

(DR)

If a transfer is made to the syntax module to rebuild a tabular report GIPSY
will reenter the DISPLA mode without destroying the previous report. Any
DISPLA action will apply to the previous tabular report which is returned in
memory. The newly built tabular report must be loaded via an ACCESS REPORT
command which will replace the old tabular report with the new one.

3.6 Picture Prucessing

This section describes the GIPSY tools available to save and recall complete
graphic displays. All the graphic information and attendant alphanumeric
information that is displayed on the screen is called a picture. These
pictures may be saved on a standard data file for subsequent display. There
is some inherent overhead in this process. Consequently picture processing is
only activated when specifically requested by the user.

Picture processing is used to create a series of displays which can then be
recalled at a future session. Some uses include combining the graphic output
from several different GIPSY sessions, or creating graphic displays in the
batch environment or on a non-graphic terminal for subsequent display on a
graphics terminal.

3.6.1 Saving Pictures. The term "RETAIN" is assigned to the process of
saving a picture. This distinguishes the saving of a single picture from the
save concept usually associated with a file operation.

Before any picture processing is performed the user must initiate picture
processing by issuing the command:

SET PICTURE PROCESSING ON.

This command enables GIPSY's picture processing software which allows each
graphic display to be preserved until a subsequent graphic display is
produced. Each subsequent graphic display will replace the previous one
unless it is retained. When a picture is complete, that picture may be
retained and labelled for subsequent recall. The syntax for retaining the

current picture is:

3-200

RETAIN PICTURE [[NAMED] <picture name>].

If the user chooses to specifically identify each picture, it is accomplished
by utilizing the NAMED option and specifying <picture name> as a label of 1 to

12 characters. This label must be enclosed in quotes if it contains blanks or
special characters. If the NAMED option is not used the name "PIC n" will be

assigned, where n is an integer representing the sequence in which the

pictures were saved. A series of pictures may be saved by notifying GIPSY to
retain all pictures until further notice. The command to accomplish this is:

SET AUTO RETAIN ON.

This will cause each picture generated to be saved prior to initiating a new

picture. Any information added interactively to the display, such as symbols
and tracks, will also be saved. The very last picture must be manually

retained although the last display will be retained when the DONE command is
issued. Automatically retained pictures will be assigned unique names in

accordance with the naming convention discussed above. Each picture will be
assigned the prefix PIC followed by a number indicating its ordinal position

in the sequence of all pictures retained. Duplicate names will not be
generated. The automatic retention capability is turned off with the command:

SET AUTO RETAIN OFF.

All pictures will be retained on a system generated temporary file unless a

picture file is supplied. If a picture file is sT:pplied it must be a file
which already contains GIPSY pictures or it must be an empty random file. If
the file already contains GIPSY pictures, ncw pictures will be retained
following the last picture on the file. The command to force GIPSY to use a
user supplied permanent file in lieu of the normal system supplied temporary

fi-e is:

PICFILE <cfd>

Where <cfd> is the catalog file descriptor of the file to be used for both
writing new pictures and recalling old pictures. The standard GIPSY

SAVE/RESAVE commands may be used to save the entire set of pictures onto a

permanent file. The syntax is:

RESAVE PICFILE [ON] <cfd>

3.6.2 Recalling Pictures. A retained picture may be recalled and redisplayed
by entering the PLOT command:

PLOT PJCTURE [NAMED] <picture name>

where <picture name> is the name that was assigned to the picture at the time

it was retained. The PLOT command can be issued in either the DISPLA or

GEOMOD modules.

3-201

Picture processing need not be set on in order to PLOT a picture. To plot a
picture on a previously saved picture file, the PICFIL <cat/file string>
command must be entered first. The interrupt command:

//PICTURE

will list all the pictures available for plotting.

3-202

SECTION 4. QUERY PROCEDURES

This section is targeted primarily toward the applications programmer who
supports the user in providing the more complex procedures as predefined PCS
files. These materials provide a further amplification of the data selection
process, field and record modification, sorting and formatted data printing.
Several capabilities have been previously discussed, some have not.

4.1 File Query

GIPSY is not a Database Management System (DBMS). While it does powerful data
selection and subsetting capabilities it does not provide sophisticated query
capability as one would expect of a DBMS. It is primarily targeted toward
allowing the user to select the data from his/her database for creation of
graphic displays and to review the data that has been or will be selected for
inclusion in a graphic or tabular display. A data retrieval, a browse, and
data subsetting capabilities comprise GIPSY's file query capability.

4.1.1 Data Retrieval. GIPSY's basic data retrieval is accomplished via the
RETRIEVE statement as discussed in section 3.2.8. The RETRIEVE statement can
only be specified in the syntax mode. It creates the subset of the data file
that is used in all subsequent GIPSY operations. Of course, the user may
execute a "TRANSFER TO SYNTAX" statement and respecify the retrieval statement
to expand the set of data that is retrieved and saved on the QDF. All data
which passed the retrieval conditions are written to the QDF. The QDF may in
turn be saved or assigned to permanent file from the start. Saving the QDF. and its associated QDT provides a very effective data subsetting capability.

4.1.2 Browsing. GIPSY's browsing capability allows the user to browse
through any portion of the data on the user's current QDF (data which passed
the RETRIEVE conditions). This capability is accomplished via two statements:
QUALIFY and PRINT. QUALIFY sets up a screen to determine which data records
will be used. PRINT causes the selected files from the qualified records to
be displayed.

QUALIFY and PRINT are actually imbedded within the geographic display
capability but does not require that geographic displays be produced. If the
GIPSY input sequence does not contain a tabular report block structure, GIPS7
transfers control to the geographic module where QUALIFY and PRINT statements
may be issued. These statements may be used in conjunction with or
independent of the geographic display functions.

The syntax for the QUALIFY statement is:

QUALIFY {AIF <conditional expression> }

The IF is optional and may be added for readability. The <conditional
expression> is as defined earlier. Recall that the <conditional expression>

4-1

may be a set of comparisons or a logic name (from a LOGIC TABLE) or repetitive

combinations thereof. This statement sets up a "filter" for all data

subsequently processed by the module. The input is the data currently
contained on the QDF. QUALIFY does not actually change what is in the QDF, it
merely sets up conditions for its processing. Since the data contained in the

QDF is only that which has previously passed a retrieval criteria, the QUALIFY
represents a secondary retrieval.

You can reference fields on the QUALIFY only if they exist in the current QDF
(e.g., they were previously referenced prior to the RUN). The INCLUDE

statement may be used to ensure that all desired fields are in the QDT. The

QUALIFY statement may be reissued as often as desired. Each subsequent

definition replaces the previous one. It filters all data until it is

replaced or nulled by the statement "QUALIFY ALL."

PRINT provides the capability to display the contents of selected data items.
It provides a semi-formatted listing of the fields identified in the
statement. If a QUALIFY has been issued, only the data meeting the QUALIFY

conditions are displayed. Otherwise, all data records on the QDF are
displayed. QUALIFY does not cause the data file to be read. The statement is

simply compiled and set up as a filter. PRINT causes the data to be read and
displayed. Each record is displayed as it meets the QUALIFY condition.

Consequently, QUALIFY and PRINT produce almost instantaneous results.

The syntax for the PRINT statement is:

PRINT [FIELDS <fieldname> ["<header>"] J [<format options>].

where <format options> are INDENT <number of spaces>

SPACE <number of spaces>

If no fields are identified (i.e., "PRINT."), all fields in the QDT will be
displayed. The report will be formatted with the fieldname centered over the

contents of the data field. The report will be automatically formatted for

the device from which the command was issued. Pagination will occur first
vertically and then horizontally if the fields to be printed exceed the width

of the device. Fieldnames may be specified to restrict the data display to

the desired fields, to confine the display to the width of the display device,

or to force the order of the printed fields. If <header> is included, that

information will be used as the header rather than the fieldname. Each
fieldname must be separated from the other by a comma. The option INDENT

followed by an integer specifies that the entire report will be shifted to the

right by that many spaces. The option SPACE followed by an integer specifies

the number of spaces between each field list. The default is two spaces.

Since both QUALIFY and PRINT are immediate action commands, QUALIFY and PRINT

may be used repetitively to provide a very effective browse capability.

The user's entire database may be subject to GIPSY's browsing capability by

treating the data file as the QDF and the FDT as the QDT. That is, issue the

4-2

statements:

QDF <user data base>
QDF <data base FDT>

then the entire database is available for instantaneous interactive selection
and display via QUALIFY and PRINT.

This browsing capability is only available for a GIPSY-created QDF or
sequential user file. The QDF statement cannot point to a nonsequential file.

4.1.3 Subsetting the Database. As has been discussed earlier, the RETRIEVE
statement may be used to identify the data records to be included in the
subset of the data base. The FIELD TABLE may be used to augment or rearrange
the data in the record. The extended record area described by the BUILD FDT
may be used to create new fields. SORT (discussed in section 4.2) may be used
to rearrange the records. Finally, the RECORD OUTPUT TABLE (discussed in
section 4.3.2) may be used to rebuild the organization of the file's data
structures. All these functions may be included in composite in the QDF which
may be saved as a subset of the user's data base. Its syntax is:

RESAVE I QDF [ON] <cfd>

In all cases except for the use of a RECORD OUTPUT TABLE, GIPSY provides a
description of the resulting subset as the ODT. The QDT may be saved by

* issuing the statement

RESAVE j QDT [ON] <cfd>

The QDF° and QDT may be used as a data file and FDT respectively in a
subsequent retrieval. The QDT is stored in FDT format; therefore, it may be
used as an FDT. Some applications use this technique to create a proper
subset of the master database and then use GIPSY or other software to operate
on the subset as it does the master database.

4.1.4 Printing to a File. The output of a PRINT command can also be written
to a sequential disk file. The syntax for this feature is:

PRINT [<print option>][HEADER "<literal>"][TRAILER "<literal>"] ON <cfd>.

The <Drint option> includes any option from section 4.1.2. The HEADER option
allows the user to append a literal to the beginning of the entire report,
whereas TRAILER places a literal at the end of the report. Both HEADER and
TRAILER are left-justified on the report.

The report can be formatted further by specifying the length and width of each
output page, using the command:

4-3

SET OUTPUT <width> BY <length>.

The parameter <width> specifies the number of characters in a line of print,
and <length> specifies the number of lines on a page. As an example, SET
OUTPUT 132 BY 66 could be used to PRINT a report to a file in a format which
can later be sent to an online printer. The SET OUTPUT command is canceled by
any SET SIZE command.

4.2 Data Sorting

GIPSY provides the capability to sort the data retrieval from the user master
file. The syntax for creating a sorted QDF is:

SORT ON <fieldnamel> ASCENDING 1 [{ J <fieldname2> ASCEND]
DESCENDING ; DESCEND ...

The first field specified becomes the major sort, each subsequent field
becomes the next subordinate sort. This capability does not sort the user's
database. It sorts only the data comprising the QDF. The fieldnames
specified as sort keys may be either fieldnames for data actually in the file
or for data provided via the field table. The sort order, ASCENDING or
DESCENDING, can be specified for each field. The default is ASCENDING. If
either option is specified, it must be separated from the next fieldname with
a semicolon.

4.3 Data Modifications

It is unusual to have a functional database whose objective is graphic
display. Typically, the database -as created and is maintained for some other
purpose. The addition of computer graphics and related services offer the
opportunity to significantly expand the utility of the data already recorded.
This section discusses the tools provided by GIPSY to aid in exploiting
existing data. These tools are primarily targeted toward the application
programmer rather than the user analyst. The application programmer will use
these tools to improve the interface between the user and his database.

It is frequently found that the data structures already in the database do not
support the required processing functions or that the data records are not
organized to allow effective exploration of the data. To accommodate these
anomalies, GIPSY provides commands and block structures to allow the record to
be modified at the field level, the file to be modified at the record level,
to rearrange the records via a sort functions, and to save the results for a
subsequent use of GIPSY or other user applications. These modifications are
applied in virtual space and do not actually alter the user's database. The
resulting output may be saved and used as an alternate copy of the database, a
subset database, a transaction file for a subsequent file update using the
applications standard procedures, etc.

These temporary data modifications are particularly useful in correcting
discovered database errors "on the fly", and in processing one set of data

4-4

* based on information retrieval from a different file.

4.3.1 Field Level Data Modification. A block structure called a field table
is provided to allow the content of any data field defined in the FDT to be
modified. It also allows data to be generated from existing data and inserted
in new fields which do not actually exist in the file. The fields modified or
loaded by the field table may be used as if they were physically part of the
record.

The syntax for the field table block structure is:

FIELD TABLE FOR INITIAL 1
WHEN <conditional expression> J

<fieldname> - <alphanumeric expression> [IF <conditional expression>].
<fieldname> - (<arithmetic expression>) [IF <conditional expression>].

END

The <conditional expression>, <fieldname>, <arithmetic expression> have the
same syntax and semantics as defined earlier. Note, however, that the
arithmetic expression must be contained within parentheses. The alphanumeric
expression is composed of a single fieldname, a literal, or a sequence of
fieldnames and literals connected by a colon. All literals must be enclosed
in quotes. The colon (:) is the operator which designates a concatenation
operation. The concatenation operation combines the two units of information
on each side of the colon into a single unit of information. The <fieldname>
on the left of the equal sign designates the field to receive the results of
the alphanumeric or arithmetic expression on the right hand side of equal
sign. However, the operation is performed only when the conditional
expression is true. If no conditional expression is specified, the indicated
operation is always performed. The field table may contain as many of these
field assignment statements as desired. They will be processed in the order
specified. Consequently, any statement may use the result of any preceding
statement. The same <fieldname> may be the receiving field as often as
desired with each independently processed in the order specified. There is no
way to unspecify a field assignment statement in the field table once it is
syntactically correct.

Every record in the database is processed against each statement in the field
table as the conditional expression permits. A conditional expression on the
FIELD TABLE statement controls entry into the field table. In other words, if
the FIELD TABLE's conditional expression is not satisfied, none of the field
assignment statements in that field table will be processed against that
record.

A single run may contain multiple field tables. Each field table and

4-5

statements contained therein will be processed against each record in the
database. The field tables are applied to the database prior to processing
the RETRIEVE statement. Since the field table is used to generate the data
for the record, use of field names within the field table do not constitute
field reference with regard inclusion of that field in the qualified data file
(QDF). Fields used in the field table will not be carried forward unless they
are otherwise referenced. The field receiving the data determines the
attributes of the field table processing. GIPSY will convert the results of
the right hand side to match attributes of the receiving field (on the left).
The field will be padded with blanks or structured to fit. Note, however,
that if a partial field is used as the receiving field, the type will always
be treated as alphanumeric and tae length will be that of the partial field.
Partial fields on the left of the equal sign may be used to replace a portion
of the data while leaving the unreferenced portion intact.

The following example illustrates the use of the field table to replace
undesirable data in record type A:

001 FIELD TABLE WHEN RECORD-TYPE EQ A.
002 DATE="810831" IF DATE EQ BLANK.
003 DATE (5/6)- "30" IF MONTH EQ 04, 06, 09, 11 AND DAY GT 30
004 DATE (5/6)- "31" IF MONTH EQ 01,03,05,07,08,10,12 and DAY CT 31
005 DATE (5/6)- "28" IF MONTH EQ 02 AND DAY GT 28.
006 END.

Line numbers were added to the above statements in order to allow them to be
referenced in our discussion. (GIPSY will accept statements with line numbers
if the statements are being specified in a PCS file.) Line 001 stipulates
that this field table will be used only when the record type field of the
record being processed contains an "A." If this condition is not satisfied
then lines 002 through 005 will be skipped. Line 002 replaces all blank date
fields with a valid date. Lines 003 and 004 corrects for erroneous days
depending on whether the month is 30 nr 31 days. Note the partial field on
the left to change only a part of the field in line 003 through 005.

The field table is often used in conjunction with a newly created field. The
BUILD FDT block structure may be used to dynamically modify the FDT to add new
fields which do not really exist and then the field table is used to load data
into those new fields. The interrupt command //FDT shows all the fields
already defined:

>//FDT
FIELD POSITION LENGTH TYPE DECPT QDT POSITION
RECORD-TYPE 1 1 A
DATE 2 5 A
READINESS 8 5 A
UNITID 20 12 A
EFFECTVNESS 36 8 F 5

4-6

Now the FDT is modified to include a few new fields to be used in a field
table:

BUILD FDT.
ADD.
CLEAR-DATE * A9.
DAY CLEAR-DATE (1) A2.
MONTH CLEAR-DATE (4) A3.
YEAR CLEAR-DATE (8) A2.
GOOD-COORD * A15.
END.

Note the use of field name (CLEAR-DATE) to provide a starting location for the
new fields -)AY, MONTH, and YEAR. Note also that an asterisk was used to cause
all these "phantom" fields to be appended to the current end of the defined
record--wherever it may be.

We can now employ a field table to load data into these otherwise empty
fields. The appropriate month is loaded, dependent upon the numeric month
code in the field DATE; then the day and year are ccpied over after appending

appropriate blanks (e.g., 830317 would be converted to 17 MAR 83):

FIELD TABLE.
MONTH - "JAN" IF DATE (3/4) EQ 01.
MONTH - "FEB" IF DATE (3/4) EQ 02.
MONTH '- "MAR" IF DATE (3/4) EQ 03.
MONTH - "APR" IF DATE (3/4) EQ 04.
MONTH- "MAY" IF DATE (3/4) EQ 05.
MONTH - "JUN" IF DATE (3/4) EQ 06.
MONTH - "JUL" IF DATE (3/4) EQ 07.
MONTH - "AUG" IF DATE (3/4) EQ 08.
MONTH - "SEP" IF DATE (3/4) EQ 09.

MONTH - "OCT" IF DATE (3/4) EQ 10.
MONTH - "NOV" IF DATE (3/4) EQ 11.
MONTH - "DEC" IF DATE (3/4) EQ 12.

CLEAR-DATE (1/3)-DATE (5/6):" ".
CLEAR-DATE (7/9)-" ":DATE (1/2).

END.

The field table may also be used to perform computations and to store the
resulting data into fields for subsequent use. While the field table aoes not
have the efficiency and flexibility of a High Order Language (HOL) such as
COBOL or FORTRAN, it has the advantage that the functior. can be imbedded in a
GIPSY sequence and used as if it were part of the file without actually
changing the file.

4-7

The following example is based on a file which (for reasons of the
application) has coordinates stored in signed floating point numbers. GIPSY
requires a 15 character coordinate. This field table converts from binary
floating point to coordinate form:

FTLE REALDATA
BUILD FDT. ADD.

LATITUDE 1 F8.4.
LONGITUDE 9 F9.4.

END.
/-
//DEFINE ADDITIONAL FIELDS FOR MAKING CONVERSION
/-
BUILD FDT. ADD.
LATSEC * BI.
LONSEC * BI.
DEGLAT * 12.

MiNAT * 12.

SECLAT * 12.

DEGLON * 13.
MINLON * 12.

SECLON * 12.

EW * Al.
NS * Al.
LATLON * AIS.
GEOCORD LATLON C15.

END.

//
FIELD TABLE.
//
//CONVERT FLOATING POINT COORDINATE TO SECONDS

//
LATSEC-(3600*LATITUDE) IF LATITUDE GE 0.
LATSEC-(-3600*LATITUDE) IF LATITUDE LT 0.
LONSEC-(3600*LONGITUDE) IF LONGITUDE GE 0.
LONSEC-(-3600*LONGITUDE) IF LONGITUDE LT 0.

I/
//CONVERT SECONDS INTO DEGREES, MINUTES, AND SECONDS
//
DEGAT-(LATSEC/3600).
MINIAT-((LATSEC- (DEGAT*3600))/60).
SECLAT-(LATSEC-DEGAT*36O0-MINIAT*60).
DEGLON-(LONSEC/3600).
MINLON-((LONSEC- (DEGLON*3600))/60).
SECLON-(LONSEC-DEGLON*3600-MINLON*60).
EW-"E".
EW-"W" IF LONGITUDE LT 0.
NS-"N".
NS-"S" IF LATITUDE LT 0.
ATLON-DEGAT:MINLAT: SECAT: NS : DEGLON:MINLON: SECLON: EW.

4-8

//PUT BACK LEADING ZEROES

LATLON(l)-"O" IF LATLON(l)-" "

LATLON(3)-"O" IF LATLON(3)-" "

LATLON(5)-"O" IF LATLON(5)-" -.
LATLON(8)-"O" IF LATLON(8)-" ".

LATLON(9)-"O" IF LATLON(9)-" ".

LATLON(ll)-"O" IF LATLON(ll)-" "

LATLON(13)-"O" IF LATLON(13)-" "

END.

The field GEOCORD may now be used as if it were part of the data file.

4.3.2 Record Level Data Modification. Data may be modified at the record
level by rebuilding the data structures that comprise the data file. This is
accomplished via the GIPSY block structure called the record output table.
The record output table allows one to define the fi.elds to be included in a
new record and the conditions under which those records are output. The
syntax for the record output table is:

RECORD OUTPUT TABLE [WHEN <conditional expression>].

FIELDS <fieldname> <fieldname> ... IF <conditional expression>
<literal name> <literal name>

END.

The optional <conditional expression> on the RECORD OUTPUT TABLE statement
controls use of the record output table. If this condition is not satisfied,
the record output table will be ignored. If no condition is attached to the
record output table, the table is always active.

Each entry in the record output table begins with the word FIELDS and is
followed by a series of <fieldnames> and <literals> which define what is to be
output to the QDF. The <conditional expression> controls the output of this
particular record. If no condition is attached, the described output record
is always written.

The presence of a record output table causes GIPSY to suspend the normal
process of field inclusion into the QDF. Only those fields specified in the
record output table will be written to the QDF. Field tables and RETRIEVE
statements are processed ahead of the record output table. Consequently, the
record produced may be composed of data which has been restructured via a
field table and passed appropriate retrieval criteria. Each entry in the
record output table produces a separate QDF record, provided the retrieval
criteria and conditional expressions are met.

4-9

The record output table is particularly suited for creating data subsets,
especially if a hierarchical structure with variable length records is
required. The following example shows how a file could be converted from a
flat to a hierarchical structure:

FILE OLD-FILE
FDT AUTO-FDT
QDF NEW-FILE
RECORD OUTPUT TABLE.
FIELDS "OWNER RECORD ", NAME,CITY,"VIRGINIA" !F NAME CHANGES.
FIELDS " AUTO RECORD ", MODEL,YEAR,COLOR.

END.
RUN

Input file:

JEFF BOGNAR ALEXANDRIA FORD 1983 BROWN
CHET BRITT WOODBRIDGE FORD 1990 GREEN
CHET BRITT WOODBRIDGE GEO 1990 WHITE
CHI HO ISEMAN ALEXANDRIA MERCEDES 1991 RED
CHI HO ISEMAN ALEXANDRIA VO0LKSWAGEN 1960 BLUE
CHI HO ISEMAN ALEXANDRIA DODGE 1981 BROWN
KYUNG SEC ARLINGTON ACURA 1987 RED

Resulting QDF:

OWNER RECORD JEFF BOGNAR ALEXANDRIA VIRGINIA
AUTO RECORD FORD 1983 BROWN
OWNER RECORD CHET BRITT WOODBRIDGE VIRGINIA
AUTO RECORD FORD 1990 GREEN
AUTO RECORD GEO 1990 WHITE
OWNER RECORD CHI HO ISEMAN ALEXANDRIA VIRGINIA
AUTO RECORD MERCEDES 1991 RED
AUTO RECORD VOLKSWAGEN 1960 BLUE
AUTO RECORD DODGE 1981 BROWN
OWNER RECORD KYUNG SEO ARLINGTON VIRGINIA
AUTO RECORD ACURA 1987 RED

Normally, the only output available from a record output table is the QDF
itself (a QDF statement should always be included). Graphic displays are not
possible unless the QDT is forced to match the QDF records. One means of
accomplishing this is through the use of the BUILD QDT block structure.

4-10

Section 5. USER TERMINAL PROCESSING PROCEDURES

This section describes GTPSY statements which were implemented in order to

interface with specific software developed for specific terminals for the
WWMCCS community.

5.1. WIS/CUC Early Product Workstation and Z-248 PC/AT GIPSYmate Interface.

The interface between GIPSY and the GIPSYmate package gives the user the

capability to recall prestored slides and to have GIPSY overlay them with

geographic data. The command that accomplishes this is:

DISPLAY [MAP [<map options>]] [ON] SLIDE [<slide name>].

If the MAP clause is ommitted, the specified slide will be displayed as stored

on the workstation. If MAP iq specified, the slide will b ±-'!-d ar!

active symbols, tracks, and circles will be plotted on top of it, along with

the classification and title lines. The <map options> are the same as

discussed in section 3.4.1.1.

The <slide name> is the name of the slide stored on the workstation. It may
be from 1 to 35 characters in length. If the <slide name> contains blanks or

begins with a numeric, it must be enclosed in quotes.

5.2 MAGIC/GIPSY Interface.

This interface provides the user with the capability to perform host data

retrievals from the MAGIC workstation. This interface satisfies most users

needs to transfer GIPSY-generated data sets to the workstation environment for

further processing.

Data can be downloaded from GIPSY to the MAGIC workstation through this

interface while the user is logged on the MAGIC workstation. GIPSY will

transfer the proper data set to the workstation.

If the command is issued while the user is in the GEOMOD or GDRMOD subsystem

of GIPSY, a QDT and a QDF data set will be sent to the workstation. If the

command is issued while the user is in the DISPLA subsysytem of GIPSY, a GDS

data set is sent.

5-1

TIS PAGE INTENTIONALLY LEFT BLANK

5-2

Section 6. GIPSY's GENERALIZED DATA REPORTS

The purpose of this section is to provide a detailed description of how to use
GIPSY's Generalized Data Reports (GDR) module (GDRMOD) in an on-line,
interactive environment as well as non-interactive mode. GDRMOD provides
GIPSY users with the capability to produce formatted, textual reports and
gives the users complete control over the format of their reports. In
addition, it provides a very flexible, dynamic paging capability for each
report produced. A report may be viewed sequentially page by page,
selectively by issuing specific commands, or may be directed to an on-line
printer.

6.1 Initiating the Generalized Data Reports Module

The Generalized Data Reports is a separate GIPSY module. It may be executed
from either within GIPSY or as a subsystem of GIPSY.

The Generalized Data Reports module ma," be entered ditectly from system _.,e
by entering the command "GIPSYR." This process will cause GIPSY to be
automatically initiated. GIPSY will respond with an initial log-on message.
The GDR module is ready for input when the GIPSY prompt ">" appears. When the
GIPSY cc-nmand "DONE" is entered, the user will be returned to system level and
the system prompt "*" appears.

The Generalized Data Reports module may be accessed via two GIPSY com nds
while the user is operating within GIPSY -- RUN TO GDP, and TRANSFER 'J GDR.
The RUN TO GDR command will cause GIPSY to read the data file specified by the
user in the FILE statement (see section 3.2.4.1), retrieve the records
specified by the retrieval criteria on the RETRIEVE statement, and output the
resulting data on a temporary file called the Qualified Data File (QDF). When
the retrieval process is complete, GIPSY will display a message showing the
number of records read and retrieved. GIPSY then places the user in the GDR
module and the prompt character ">" is displayed.

The TRANSFER TO GDR command allows the GIPSY user to exit the GIPSY module
currently executing and enter the GDR module. If the transfer command is
issued while the user is in GDR, nothing happens -- the GDR module is not
exited and reentered.

6.2 Data Manipulation

The GDR module uses the data records which meet the retrieval criteria and
have been saved in a temporary file called a QDF. The QDF and its associated
Qualified Descriptor Table (QDT) are passed to GDR. The user may wish to save
the QDF/QDT for subsequent GDR runs. This makes it possible to bypass
selection of data from the master file if the data and retrieval have not
changed.

6.2.1 Field Manipulation. The capability exists within GIPSY to modify the
QDT to support new fields. The BUILD QDT structure can be used to further

6-1

expand the QDT to include GLOBAL, QUALIFY, or QDF extended fields as well as
QDF overlapping fields.

The syntax for the BUILD QDT structure is as follows:

BUILD QDT.
[<add type>].
[<command to add field definition>].
END.

6.2.1.1 Add TyRe. The command for the <add type> is the single word ADD
followed by the type of structure that it is to be added to. The syntax for
the structure is:

QDF

ADD TO QUALIFY
GLOBAL)

6.2.1.2 Command to Add Field Definition. The command line used to create a
new field to augment an existing file is structured as follows:

<field namel> <defined fieldname> [, <type and length>]
< l<starting position> , <type and length>

< <defined fieldname> [, <type and length>]
<field name2> <starting position> , <type and length>

null line.

The ADD TO QDF will define QDF fields like ADD to FILE defines file fields.
For a more complete discussion of the BUILD process, see section 3.2.5.1
(Describing Data File Records to GIPSY).

6.2.2 Record Manipulation. The capability exists to provide user control
over the database field manipulation to affect the contents of the report.
These capabilities are as follows:

a. Database sort

b. Data record qualification

c. Data element manipulation

6.2.2.1 Database Sort. A database sort occurs prior to the generation of a
report. This may be done with either a SORT command or a RESORT command.

6.2.2.1.1 SORT Command. The capability to sort the data retrieval exists
within GIPSY. The syntax for creating a sorted QDF is:

6-2

SORT ON <fieldnasel> [SCENDING] [{ }<fieldname2> ASCEND
DESCENDINGSCEND

For a detailed explanation of this statement, see section 4.2 which discusses
the data sorting capability.

6.2.2.1.2 RESORT Command. The RESORT command performs a sort of the user's
QDF. This action is immediately taken upon acceptance of the command. The
syntax for the RESORT command is:

RESORT TO FILE <cfd> ON <sort field list>

The optional TO directs the resorted QDF to be placed either in the original

QDF or another specified file. If neither FILE nor QDF is specified, the
resorted QDF is placed in a temporary file generated by the RESORT process.

The GIPSY standard sort field list is used for the <sort field list> which
includes sort field Driority and the direction of the sort.

6.2.2.2 Data Record Qualification. The capability exists to dynamically
alter the selection of data prior to generating a report. This may be done
with the QUALIFY command. The QUALIFY command initiates the structure that
GIPSY uses to subset the QDF based upon user criteria. Only those QDF records

that pass the qualify criteria will be passed to the GDR module. Each
specified QUALIFY structure replaces the previously specified QUALIFY

* structure. The syntax for the QUALIFY command is:

'[IF] <conditional expression>

QUALIFY (ALL <logic table entry>

The keyword IF is optional and is added only for clarity and readability. The
<conditional expression> may be an IF clause or a previously defined name from
a logic table. See section 3.4.4 for further details on the QUALIFY

statement.

The only fields that can have further overlapping definitions are straight
"QDF" fields. QUALIFY, QDF extended, and GLOBAL fields cannot have

overlapping subordinate definitions.

6.2.3 ODF Manipulation. There are several GIPSY structures available in the
output processor. These structures are processed against the QDF and include:

QUALIFY - Provides a logical subset of the QDF. Refer to section 3.4.4

for further explanation.

FIELD TABLE QDF - Provides data manipulation against QDF fields. Refer
to Appendix C for further explanation.

6-3

FIELD TABLE QUALIFY - Provides data manipulation against QDF fields.
Refer to Appendix C for further explanation.

FIELD TABLE CALL - Provides an immediately executable Field Table
structure. Refer to Appendix C for further
explanation.

6.3 Report Building

GIPSY produces a variety of f.rmatted textual reports. The GDR module
provides the user the means to adequately define to GIPSY the format of
displays. Figure 7-1 is provided as a guide to the user. It should be
referenced for further clarification as each section is referenced below.

6.3.1 Report Definition. The GDR module allows the user to describe the
format of his/her reports to CIPSY rather than forcing a pre-determined
default format for the user's reports. The format is described by neans of an
output table. In defining the report, the user may specify two sections:
PARTS and the GROUPS. The syntax for defining the output table is:

OUTPUT TABLE [NAMED] <name>.

The output table is a block structure bounded by OUTPUT TABLE and END. This
block structure only defines the format of the reports. The following
sections define processes within the structure.

6.3.1.1 Parts Definition. Each report may have one or several parts to it.
The user should consider a part as the lowest level of data to be collected
under a single heading. The main components of a part are the header, body
and the trailer.

6.3.1.1.1 Header Table. This component allows the user to identify the
information that is to be replicated at the top of each page. The header
table is an optional substructure within the output table and, as such, must
be specified within the OUTPUT TABLE structure. The header table must be
ended by either the END HEADER or END commands. The syntax for the HEADER
TABLE command is:

HEADER TABLE [PART <part number>].
<output element statements>

END.

6.3.1.1.2 Body Table. The body table allows the user to format the principal
portion of the report. The body table is an optional substructure within the
output table and, as such, must be specified within the OUTPUT TABLE
structure. The body table must be ended by either END BODY or END commands.

6-4

I C%

c1 y ULi LiLi
I-L.I I 1 "

Li., l W 000(

-- -' ab 0-
Ew L)UL)

U-& L& LA*A

* U Uin M

I. 0) 6

CC -

u I.-LnL LiWww

Z5- - - -o .4- -- j-. -444. .

6-5

LiL

LiJ

-4-

IL -- t.T

La -i

C,. C,

C 0-

m) 0

W . Ln I-
C - I c -ax L -

n ~ ~ L 4: ?L-Jj 81..

A- L (f Em

I-- Liix.

I. -q c

~Lr4 4

LI-.J

aIi aL I
Tor4 =\-4 F1 4 4W- .

4 ~ --6q4w4w4 .. q- . - q-q qv . - " - " . 4 -4 4 w4 4

6-6

m~ LA)

uJ LiU0 L

I. 7

U)J U) U

U u

N U N l N

u I- U 0. (11 C

aX\ N N N aX

j CD

0 .f N.U 0.U o
NLJ W.N.DJ1)c

w-4 "t-04of 4 - 4q4 . 4w 4w - 4%4w 4w 4w 41"w

~ I.6-7

PI Lai

L-
U:4

X d Ltrl

JJ W
U-oU

L-

LO- I -
U) ULI =) in L

IA E.I L. I
1) UJb

C. 1-4 E
N Ui L)U
N u n ' L.

N N g 6 A

L)L& U. NLAJ EiE
'TU, u U: (L -LJ

t - cm L 0

1j~ U Li %., m a7

I'-~' U %

0
0LI *.L. UZLJ9

u.- L:0- JW,

S-s (LL.

I>N>Ci 1.4 -4-. a)

W :I- : t L& w4 4 14

L. S-. w iW L WL.

RROBSOSRN N NN

W4 W4 W4W-4 N4 - W4 -4 N

N. 0~ uNNN uNc

0

m Ln

"-44

Li

- 0

W 0

Cn

N-~ A4

N N
(N

s.L.

'-a

NN MN Cu NNN *

* 6-9

The BODY TABLE command may also have an optional FOR clause following the

<part assignment>. The syntax for the BODY TABLE command is:

BODY TABLE [PART <part number>] [FOR <for clause>].
<output element statements>

END.

where <for clause> specifies when this structure will be executed and may be
one of the following:

INITIAL (when the first record is processed)
FINAL (after the lasL record has been processed)

when the FOR clause is not specified, processing occurs for each record.

6.3.1.1.3 Trailer Table. This component allows the user to identify the

information that is to be replicated at the bottom of each page. The trailer
table s an optional substructure within the output table and, as such, must
be specified within the OUTPUT TABLE structure. The trailer table must be
ended by either the END TRAILER or END command. The syntax for the TRAILER
TABLE command is:

TRAILER TABLE [PART <part number>].
<output element statements>

END.

6.3.1.1.4 Output Element Statements. All of the executable statements
available within the FIELD TABLE QDF structure are also available to the
<output element statements>. There are three more statements, though totally
unique which may be used in formatting a report. They are as follows:

LINE - Builds and outputs one line of the report

SPACE - Outputs line feeds (also known as spaces or carriage returns)
to the report

EJECT - Outputs page ejects (also known as form feeds or new pages).

The syntax and use of each of these statements is outlined below along with

several other examples.

6.3.1.1.4.1 The LINE Statement. The LINE statement builds and outputs one

line to the report. Output elements are separated by commas and a colon

concatenates data elements together for use as a single output element. A

6-10

data element refers to any QDF, QDF extended, QUALIFY, GLOBAL fields, and/or
an alphanumeric literal. This can also be the result from the execution of a
user subroutine (see section 6.4.5.3). The complete syntax of the LINE
statement is:

LINE [/<part number>] <line number> [IF <conditional expression>].

where <part number> is the part in which the line is to be output.
This field, if specified, will override a default part assignment
made in the suboruinate structure, as in "HEADER TABLE PART 2". If
no part assignment is given in the line statement, then <part
number> defaults to whatever was set in the subordinate structure.
If, on the other hand, no part assignment is given at all, then
<part number> defaults to one.

where <line specification> is one or more complete output elements,
including placement (COL, CENTERED, etc.) and/or picture mask (PIC).
Each output element on a line must be separated by commas and be
self-contained.

Data elements used to build output elements include any combination of the
following:

<field>
"<alphanumeric literal>"
$<user subroutine>
$$<field routine>
(<arithmetic expression>)

Each output element may be placed on the report with any of the following
phrases:

COL <column number>
COL + <column number relative to end of last column>
RIGHT JUSTIFIED [<placement option>]
LEFT JUSTIFIED [<placement option>]
CENTERED [<placement option>]

where the various <placement options> are:

WITHIN followed by the number of columns in which to place this entire
element (in.iuding before and after blanks). If the number of columns is
not specified, this will default to the whole page. This may cause
over-lapping elements; keep in mind that the last element built takes
priority.

TEXT WITHIN followed by the number of columns in which to place this
element (excluding before and after blanks). If the number of columns is

not specified, this will default to the whole page. This may cause

over-lapping elements; keep in mind that the last element built takes

6-11

priority.

TEXT COMPRESSED WITHIN followed by the number of columns in which to
place this element. All repeating blanks within the element will be
compressed into one blank. If the number of columns is not specified.
this will default to the whole page. This may cause overlapping
elements; keep in mind that the last element placed takes priority.

TEXT PACKED WITHIN followed by the number of columns in which to place
this element. All blanks in the element will be eliminated completely.
If the number of columns is not specified, this will default to the whole
page. This may cause overlapping elements; keep in mind that the last
element placed takes priority.

The following examples will outline the various options available within the
LINE statement. Each example will utilize the sample QDF record below and its
supporting BUILD QDT structure:

ARMY FORT HUACHUCA TANKS 25517092

BUILD QDT.
ADD.
SERVICE N.ME 1 A0.
BASE-NAME 11 A17.
EQUIP-NAME 28 A6.
NBR-EQUIP 34 15.
READY-PCNT 39 13.

END.

EXAMPLE 1:

LINE "THIS IS A REPORT FOR ":SERVICE-NAME.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY

The literal "THIS IS A REPORT FOR" and the contents of the QDF field
SERVICE-NAME are concatenated together to form a single output element. The
element was output starting in column I by default as no column position was

given in the statement.

EXAMPLE 2:

LINE "THIS IS A REPORT FOR ":SERVICE-NAME COL 15.

6-12

1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY

The output element "THIS IS A REPORT FOR ARMY" was built and output starting
in column 15. The option to note in this example is "COL". It specifies the
starting position (in this case, column 15) for the entire output element.
Remember that the colon (":") separates data elements to be treated as a
single output element.

EXAMPLE 3:

LINE "THIS IS A REPORT FOR "COL 10, SERVICE-NAME COL 35.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY

The literal "THIS IS A REPORT FOR " was output starting in column 10. The
contents of the field SERVICE-NAME were output starting in column 35.
Remember the comma (",") separates output elements. Each output element was
given its own starting position by using the key word "COL" followed by a
number for each element.

.EXAMPLE 4:

LINE "THIS IS A REPORT FOR "COL 10, SERVICE-NAME COL + 2.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY

The literal "THIS IS A REPORT FOR" was output starting in column 10. The
contents of the field SERVICE-NAME was output with two blanks separating it
from the end of the literal. An internal "end of last element" count is kept
for the user at all times. The plus sign ("+") following the key word "COL"
signifies that this count be used to compute the starting position of the
output element. The count is always kept one column past the end of the last
element so "COL + 0" places the element flush against the last one and "COL +
3" puts three blanks between the elements.

EXAMPLE 5:

LINE "THIS IS A REPORT FOR ":SERVICE-NAME CENTERED.

6-13

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY

The output element "THIS IS A REPORT FOR ARMY" was built and centered on the
page. The key word "CENTERED" dictates centering. When CENTERED is not
followed by any of the centering options (discussed next), the element is
centered on the page.

EXAMPLE 6:

LINE "THIS IS A REPORT FOR " CENTERED WITHIN 30, SERVICE-NAME COL 15.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY

The output element "THIS IS A REPORT FOR" was placed on the report centered
within the first 30 columns. The key words "CENTERED WITHIN", followed by a
number, dictate that the element is to be centered within a column span. The
"end of last element" counter is used to determine the starting position of
the column span since no column was specified. The counter starts at 1 for
every new line. The element was then centered within columns 1 and 30. The
output element, the content of the field SERVICE-NAME, was placed starting in
column 35.

EXAMPLE 7:

LINE "THIS IS A REPORT FOR " COL 15 CENTERED WITHIN 30, SERVICE-NAME COL 50.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY

The literal "THIS IS A REPORT FOR" was centered within 30 columns and the
beginning of the span was set to 15. Therefore, the element was centered
within columns 15 through 45. The content of the field SERVICE-NAME was

output starting at column 50.

EXAMPLE 8:

LINE "THIS IS A REPORT FOR ", SERVICE-NAME CENTERED WITHIN 20.

6-14 i

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY

The output eltn!ant "THIS IS A REPORT FOR" was output starting in the column
determined by the "end of last element" counter which is always set to 1 at
the beginning of every new line statement. This element is 20 characters long
so the counter was set to 21 following oucput of the literal. Knowing that
"CENTERED WITHIN" uses the counter to determine the start of the centering
span, the content of the field SERVICE-NAME does not look centered within
columns 21 through 40 which would be the next 20 columns but it is. The BUILD
QDT at the front of this discussion stated explicitly that the field
SERVICE-NAME was 10 characters long. In this example, all 10 characters were
centered within column 21 through 40 even though six of them were blanks.

EXAMPLE 9:

LINE "THIS IS A REPORT FOR ", SERVICE-NAME CENTERED TEXT WITHIN 20.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY

Compare the results of this example with the results of the last example.
Only the non-blank characters of the contents of SERVICE-NAME were centered
within columns 21 through 40. The key words "CENTERED TEXT WITHIN dictate
that only the characters in the field be centered and that all blanks
surrounding the characters be ignored while centering. The element "THIS IS A
REPORT FOR" was output starting in column 1 as before.

EXAMPLE 10:

LINE "THIS IS A REPORT FOR " COL 5, SERVICE-NAME COL + 2, BASE-NAME RIGHT
JUSTIFIED.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY FORT HUACHUCA

The placement of the first two output elements should not require any further
explanation to the user. The contents of the field BASE-NAME (the third
output element) was right-justified on the page. When the key words "RIGHT
JUSTIFIED" are not followed by any of the justification outputs (discussed
below), and a specific placement is given before it, the span is defaulted to
the rest of the page. Note that the content "FORT HUACHUCA" does not appear
to be completely-right justified. The field BASE-NAME is defined in the QDT

6-15

to be 17 characters long and the entire field, including blanks, was justified
on the page.

EXAMPLE 11:

LINE "THIS IS A REPORT FOR " COL 5, SERVICE-NAME COL + 2, BASE-NAME RIGHT
JUSTIFIED TEXT.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY FORT HUACHUCA

In this example, the content of the field BASE-NAME was right justified
without trailing blanks. Again, the key word "TEXT" dictates that this
happens.

EXAMPLE 12:

LINE "THIS IS A REPORT FOR " COL 5, SERVICE-NAME COL + 2, "EQUIPMENT LOCATED
AT ":BASE-NAME RIGHT JUSTIFIED TEXT.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY EQUIPMENT LOCATED AT FORT HUACHUCA

Here, the output element "EQUIPMENT LOCATED AT FORT HUACHUCA" was built and
right-justified on the page without the extra blanks in the field BASE-NAME.
Again, this is due to the key word TEXT.

EXAMPLE 13:

LINE "SERVICE ":SERVICE-NAME LEFT JUSTIFIED TEXT, "STATUS REPORT " CENTERED,
"BASED ":BASE-NAME RIGHT JUSTIFIED TEXT.

1 2 3 4 5 6 7
123456789C123456789012345678901234567890123456789012345678901234567890

SERVICE ARMY STATUS REPORT BASE FORT HUACHUCA

In this example, no columns or column spans were given following the key words
"LEFT JUSTIFIED", "CENTERED", and "RIGHT JUSTIFIED". Without specific
starting positions, these placement options default to use the entire page.

LINE "THIS IS A REPORT FOR ":SERVICE-NAME LEFT JUSTIFIED TEXT, "STATUS
REPORT" CENTERED, "EQUIPMENT LOCATED AT ":BASE-NAME RIGHT JUSTIFIED TEXT.

6-16

2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890

THIS IS A REPORT FOR ARMY STATUS EQUIPMENT LOCATED AT FORT HUACHUCA

This line has a problem. The output processor built this line exactly the way
the user asked it to. First, the output element "THIS IS A REPORT FOR ARMY"
was built and placed as requested. Second, the output element "STATUS REPORT"
was built and placed and third, the output element "EQUIPMENT LOCATED AT FORT
HUACHUCA" was built and placed. When the third element was placed, it
overwrote part of the second element. This is a possibility that should be
kept in mind when building output elements.

EXAMPLE 15:

LINE "A USER WOULD PROBABLY NEVER DO THIS" CENTERED TEXT
COMPRESSED.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

A USER WOULD PROBABLY NEVER DO THIS

While the example appears to be a little ridiculous, the concept being shown
is not. The key words "CENTERED TEXT COMPRESSED" dictate that all repetitive
blanks be reduced down to only a single blank. Just because the example says. that "A USER WOULD NEVER DO THIS", does not mean that a need for the
"COMPRESSED" option would never exist.

EXAMPLE 16:

LINE "STATUS REPORT FOR ":SERVICE-NAME:" AT ":BASE-NAMED CENTERED TEXT
COMPRESSED.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

STATUS REPORT FOR AT FORT HUACHUCA

Remember that SERVICE-NAME is a 10 character field as defined in the QDT. In
our example database record, the content of that field is "ARMY".

The "COMPRESSED" option removed the additional spaces between the words "ARMY"
and "AT". The key words "TEXT" meant that the blanks following the contents
of BASE-NAME were not included in the centering; "COMPRESSED" alone would have
compressed these extra blanks down to one blank instead of ignoring them.

6-17

EXAMPLE 17:

LINE "A USER WOULD PROBABLY NEVER DO THIS"
LEFT JUSTIFIED TEXT COMPRESSED, "WOULD HE?" RIGHT JUSTIFIED
TEXT COMPRESSED.

1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890

A USER WOULD PROBABLY NEVER DO THIS WOULD HE?

This example is meant to show that both the "RIGHT JUSTIFY" and the "LEFT
JUSTIFY" key word options can also include "COMPRESSED".

EXAMPLE 18:

LINE "A USER WOULD PROBABLY NEVER DO THIS"
LEFT JUSTIFIED TEXT PACKED, "AT LEAST," CENTERED TEXT PACKED WITHIN 15,

I DON'T THINK SO" RIGHT JUSTIFIED TEXT PACKED.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

AUSERWOULDPROBABLYNEVERDOTHIS ATLEAST IDON'TTHINKSO

The keyword "PACKED" following the keywords "LEFT JUSTIFIED", "CENTERED", and
"RIGHT JUSTIFIED" dictates that all blanks be removed before placing the
output element on the report.

EXAMPLE 19:

LINE SERVICE-NAME LEFT JUSTIFIED COL 5, EQUIP-NAME COL + 3, "TOTAL
EQUIPMENT ": NBR-EQUIP PIC "ZZ,ZZ9" RIGHT JUSTIFIED.

1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890

ARMY TANKS TOTAL EQUIPMENT 25,517

The output element "TANKS" was built using the content of the field

EQUIP-NAME. It was then placed on the three blanks after the end of the

output element "ARMY " (remember the QDT!) using the "end of last

element" counter. The element "TOTAL EQUIPMENT 25,517" was built and then

right-justified on the page. Notice the PIC clause. The contents of the
field NBR-EQUIP were 25517 and yet it was output as 25,517.

"PIC" is a keyword in the LINE statement. It is immediately followed by a

"picture mask" that is surrounded by quotes. This mask is very much like the

6-18

* COBOL picture mask. Below is an example which illustrates the PIC clause, the

beginning number, the picture mask held against it, and the resulting number:

NUMBER PICTURE MASK RESULTS

25517 ZZZZZ,ZZ9 25,517
33 ZZ,ZZZ,ZZ9 33
0 ZZ9 0

1337295 ZZ,ZZZ.Z9 13,372.95
0 ZZ,ZZZ.99 .00
0 ZZ,ZZ9.99 0.00
-1 ZZ,ZZ9.99 -1.00

1.792 ZZ9.9 1.8
1.792 ZZ9.99 1.79
1.555 ZZ9.9 1.6
1.555 ZZ9.99 1.56
-1.558 ZZ9.99 -1.56
14785 ZZ9.99 147.85

147.85 ++,++9.99 +147.85
147.85 ++9.99

-147.85 +-+,++9.99 -147.85
8765.43 $ZZZZZ,99 $8,765.43

.20 $ZZZZZ.99 $.20
8765.43 $$$,$$$,99 $8,765.43

.20 $$$,$$9.99 $0.20
-.20 $$$,$$9.99 $-0.20

If the resulting number will not fit into the mask, a string of asterisks is
returned. If the number has three digits after the decimal point arid the mask
shows only two, the resulting number will be rounded to the nearest place. If
a number is negative, the minus sign ("-") will always be forced onto the
resulting number; if the minus sign doesn't fit, a string of asterisks is
returned.

6.3.1.1.4.2 The SPACE Statement. The SPACE statement allows the user to

force line feeds to the page. The complete syntax of this statement is:

SPACE [/<part number>] <space parameter> [IF <conditional expression>].

where <part number> is the part in which the line is to be output. This
field, if specified, will override a default part assignment made in the
subordinate structure, as in "HEADER TABLE PART 2". If no part
assignment is given in the SPACE statement, then <part number> defaults
to whatever was set in the subordinate structure. If, on the other hand,
no part assignment was given at all, then <part number> defaults to one.

where <space parameter> is the number of line feeds to perform. This may
be a numeric literal, a mathematical expression (enclosed in
parentheses), or a field.

6-19

The following examples illustrate some uses of the SPACE statement.

EXAMPLE 1:

HEADER TABLE PART 3
LINE TITLE CENTERED.
SPACE 2.

END.

In this example, the content of the field TITLE will be centered on the page
for PART 3. Two blank lines will follow, separating the title from the rest
of the page. Notice that both the LINE and the SPACE statement use the
default part assignment of 3 set in the subordinate structure opening
sentence.

EXAMPLE 2:

BODY TABLE PART 5.
LINE/6 "THIS GOES ON PART 6".
SPACE/6 1.
LINE "THIS GOES ON PART 5".
SPACE 1.

END.

Although the default part assignment for this BODY TABLE is 5, the literal in
the first LINE statement and the line feed from the SPACE statement following
it will be output for PART 6. The next LINE and SPACE statement will use the
default part assignment of 5.

EXAMPLE 3:

TRAILER TABLE.
SPACE 3.
LINE "TOTAL AVERAGE- ':TAVG COL 20.

END.

Here, no part assignment is specified, so <part number> automatically defaults
to one for both the LINE and the SPACE statement.

6.3.1.1.4.3 The EJECT Statement. The EJECT statement allows the user to
force page breaks in a report. The complete syntax of this statement is:

EJECT [/<part number>] [IF <conditional expression>].

where <part number> is the part in which the page break is to occur.
This field, if specified, will override a default part assignment made in
the subordinate structure, as in "HEADER TABLE PART 2". If no part
assignment is given in the EJECT st.tem=nt, then <part number> defaults
to whatever was set in the subordinate structure. If, on the other hand,
no part assignment is given at all, then <part number> defaults to one.

6-20

Below are a few examples of the EJECT statement.

EXAMPLE 1:

TRAILER TABLE.
LINE "MONTHLY TOTALS: ":COL 20.

EJECT

END.

Here we have no part number specified, so the default value of one will apply

for both the LINE and EJECT statements. After the literal and the contents of

TOTAL is written out, a page break will occur every time this TRAILER TABLE is

executed.

EXAMPLE 2:

BODY TABLE PART 4.
LINE STATE-NAME COL 10, AIRFLD COL 30.

EJECT/2 IF STATE-NAME CHANGES AND NOT FIRST-REC.

LINE/2 AIRFLD COL 10, CONDITION COL 30.

END.

In this example, PART 4 will contain a list of states and associated
airfields. A page break will occur for PART 2 every time STATE-NAME changes

(and not the first record). This will give you a list of airfields and their

condition, for PART 2, broken down by state name. Notice that the "/2" part

assignments override the subordinate structure opening sentence part

assignment.

6.3.1.1.5 The Output Table Subroutines. This section defines the GIPSY

subroutines available within the output table substructure. The subroutine

name is preceded by a dollar sign "$" and arguments that either pass or

receive data from the subroutine are field names defined in the FDT or QDT.

6.3.1.1.5.1 $BODY-LINE. Subroutine $BODY-LINE will return the number of the

current body line count of a page being processed. This number is useful in

conditional expressions. The syntax for this statement is:

$BODY-LINE (<part number>)

where <part number> is the specific part for which you want the body line

count.

The following example will advance th print line two spaces if the current

body line count for part I is not equal to line 1:

SPACE 2 IF $BODY-LINE(l) NE 1.

6.3.1.1.5.2 SBODY-PART. Subroutine $BODY-PART will return the part number

currently being processed. The syntax for this statement is:

6-21

$BODY-PART

The following example illustrates this subroutine in a conditional expression:

GROUP ALPHA-l, INDEX-2, SUMMARY-3:4:5.
HEADER TABLE.

LINE "SUMMARY OF FINDINGS" CENTERED IF
$BODY-PART BT 3/5.

The literal "SUMMARY OF FINDINGS" will be centered in the heading whenever the
current body part is part of the group called SUMMARY.

6.3.1.1.5.3 SLINES-LEFT. Subroutine $LINES-LEFr will return the number of
body lines left on the current page. The syntax for this statement is:

$LINES-LEFT (<part number>)

where <part number> is the specific part for which a body line count of
lines left on the page is done.

The following example illustrates this subroutine in a conditional expression:

EJECT IF $LINES-LEFT(l) LT 5 AND $LINES-LEFT(l) NE 0.

A page eject will occur for PART I only if the number of lines left on the
page is between zero and five.

6.3.1.1.5.4 SPAGE-NUMBER. The subroutine $PAGE-NUMBER will output the
currernc page number of the specified part. The syntax for this statement is:

$PAGE-NUMBER (<page number>)

where <page number> is the specific part for which the page number is to
be output.

In the following example, the page number of each page of PART 2 will be
right-justified in the heading for PART 2 along with the literal "PAGE":

HEADER TABLE PART 2.
LINE "PAGE":$PAGE-NUMBER(2) RIGHT JUSTIFIED.

6.3.1.1.5.5 SPRINT-DATE. Subroutine $PRINT-DATE will output the date the
report is generated on as an output element to a specified output location.
The syntax for this statement is:

$PRINT-DATE

In the following example, the current date will be left justified in the

heading for PART 3. The format for the date is dd/mmm/yy (i.e., I/MAY/85):

6-22

HEADER TABLE PART 3.
LINE SPRINT-DATE LEFT JUSTIFIED.

6.3.1.1.5.6 SPRINT-TIME. Subroutine $PRINT-TIME will output the current time
as an output element to the specified output location. The syntax for this
statement is:

$PRINT-TIME

The following example will left-justify the current time in the heading for
PART 3. The format for the time is the standard military format (HH:MM):

HEADER TABLE PART 3.
LINE $PRINT-TIME LEFT JUSTIFIED.

6.3.1.1.5.7 $TOTAL-PAGES. Subroutine $TOTAL-PAGES returns the total number
of pages in a report. The syntax for this statement is:

$TOTAL-PAGES (<part number>)

where <part number> is the specific part for which a total page count is
desired.

6.3.1.2 Group Definition. As previously discussed the user has broken the
report into parts. The user may wish to assemble one or more parts into a
meaningful, manageable display. This may be done by specifying the GROUP
command and assigning it the part numbers to be viewed. The syntax for the
GROUP statement is:

GROUP <group name> - <part number> [:<part number>][, <group name>].

Where <group name> is the name assigned to the group by the user and <part
number> is the specific part to be associated with that GROUP.

6.3.2 Report Preparation. The BUILD OUTPUT Statement initiates the operation
of report generation. Prior to this time, the output table commands have just
specified the report format and criteria. This process involves the
retrieving of records from the QDF and passing the records through the FIELD
TABLE QDF and the specified output table structure.

The finished report is then output to the BOOK location defined. The syntax
for the BUILD OUTPUT statement is:

BUILD OUTPUT [NAMED] <name> TO <book name>.

where <name> is the 1-36 character name assigned to the output table
defining the format of the report.

The BOOK file must be created before entering the GDR module. If the user
enters from another GIPSY module, the BOOK file must be created before

6-23

entering GIPSY. The creation of a file is done at the Honeywell system level
in the ACCESS subsystem. The BOOK file must be a random file. The example
below shows the "short hand" creation of a random file 100 little links
(llinks) in size and being given no specific permission:

ACCE CF, <cat/file>, B/100/,MODE/RANDOM/

where <cat/file> is the standard Honeywell character string pointing to
the file the user wishes to create.

Once the BOOK file has been created, the end-cf-file mark must be put on the
file, to "un-null" it.

This is done at the Honeywell system level with the following command:

ERASE <cat/file>

where <cat/file> is the standard Honeywell character string pointing to
the file the user created.

6.4 Report Viewing. After creating a BOOK, the user has the option of
reviewing the BOOK's contents in detail. This capability is available through
the DISPLAY BOOK command which can be utilized in either interactive or
non-interactive mode.

6.4.1. Interactive Book Review. In interactive mode, display processing is
very similar to a GIPSY block structure where a display command may be entered

into the terminal in a conversational manner. At any time during this
session, the user has the option of issuing another display command or ending
the current review. The syntax for the DISPLAY BOOK command in interactive
mode is:

DISPLAY BOOK <book name> INTERACTIVE

<display command 1>

<display command n>
END.

Where <book name> is the BOOK to be displayed and <display command> can be a
group name, part number, and/or page specification. A detailed discussion of
all available display commands can be found in section 6.4.3.

Before viewing a BOOK, it is essential that the user understand how a BOOK is
structured. A thorough comprehension of these concepts enables the user to
quickly and easily locate a given section of the whole BOOK for subsequent
review and/or output.

6-24 0

An important concept to understand when displaying a BOOK is that of the
viewing window, sometimes called the viewport. A viewing window can be
thought of as a picture frame which encloses the area that you, the user,
specify. While you can look at any one piece of the whole picture in detail,
it must be physically within the boundaries of the picture frame for you to
see it. During display processing, GDR looks at BOOKs the same way. The
DISPLAY BOOK command is, essentially, a viewing window specification which,
for GDR purposes, will always be a <group name>. For interactive BOOK
viewing, this may be specified as a <display command>. A special case of this
concept is when the user enters "ALL GROUPS" as a display command. GDR
processes this command in the same manner as a normal <group name> except that
the viewing window is expanded to treat all groups as a single, large GROUP.
Subsequent BOOK review will result in all groups being viewed sequentially,
and all their subordinate parts being viewed in the logical order that they
were referred to in the GROUP statement (see section 6.3.1.2).

To interactively review the BOOK shown in figure 6-2, the user would enter
"DISPLAY BOOK BKAIRFLD *." This command not only instructs GDR to view the
BOOK interactively, it also uses default values to specify a viewing window.
Since GDR establishes a default value of I for GROUP, PAGE, and PART, the
resultant display will be INDEX, PAGEI, PARTI as shown in figure 6-2, Part 1
of 4.

To completely understand the viewing process, a discussion of PAGEs and PARTs
is required. A PART is the smallest physical subdivision of a BOOK. It is a
subordinate structure which can be incorporated into a logical grouping called
a GROUP. Each GROUP must have at least one PART. A PAGE can best be thought
of in terms of the screen of a computer terminal. Each PART must have at
least one PAGE and when the user is viewing a BOOK, GDR displays it in terms
of PAGEs. Consequently, in order to step through the remaining parts of the
GROUP named INDEX, the user should continue to enter "/NP". This command
instructs GDR to advance to the next PART, leaving the PAGE specification at
the same value. For further information on PART structures, refer to section
6.3.1.1 and a full discussion of all display commands can be found in section
6.4.3. However, from this point on, it is the user's discretion to continue
entering display commands or to terminate the current session with the END
command.

6.4.2 Non-Interactive Book Review. Non-interactive display processing is
useful when reviewing exceptionally large BOOKs. It permits the user to

display any number of specified PAGEs from any number of specified GROUPs
and/or PARTs. PAGEs will be displayed in the order specified by simply
responding with a carriage return <CR> after each PAGE is displayed. GDR will
respond with the prompt character ">" when all display commands have been
processed. The user should be reminded that BOOKs to be reviewed
non-interactively, must have been described using GROUP names with all PARTs
(i.e. each PART must be associated with a GROUP name).

6-25

LLI

a.LL. '-4

0

r-4

'-41

zz

1-4 Ui V-

0

--

6-264

xX

M -
z

a.4

0

(-4
U -4mo'-~0.

0-44

0 6-27

N JJ

0

q-44

0 0

'0

LAQJ

bcj
"-4

6..

6-28

44
N 0

4-

x 0

z

0

L.JL

- w-w

00

.

Ix)

6-29

The syntax for the non-interactive DISPLAY BOOK command is:

DISPLAY BOOK <book name> <group namel> <display command>
[, <group name2> <display command>

Where <book name> is the BOOK to be displayed, <group name> refers to the
GROUP the user wishes to review, and <display command> can be a PAGE and/or a
PART command.

Referring to the BOOK in our previous example but using a different GROUP as
shown in figure 6-3, the user wishing a non-interactive viewing could enter
"DISPLAY BOOK BKAIRFLD RUNWAY FP, Page 4, LP.". This command will cause three
pages of the GROUP named RUNWAY to be displayed. Since no PART specifications
were made, the first, fourth, and last pages of PARTI will be shown as
described previously using a carriage return <CR> to signal page advance.
However, if a <display command> is entered at the end of a display rather than
a carriage return <CR>, the processing mode changes to interactive. The user
may then input any and all display commands until, wishing to terminate the
session, entering the END command. This ends display processing and the GDR
prompt character ">" appears. Therefore, the user is cautioned when using
this option since the transfer to interactive processing is a one-way street.

At the time of transfer, any unfinished, non-interactive commands are lost and
must be reentered.

6.4.3 Book Review Display Commands. The majority of display commands
available for display processing, are in reference to PAGEs, PARTs, or both.
This is only natural since you, as a user, will view a BOOK through its PARTs
and each PART is displayed on your screen as one or more PAGEs. All PAGE and
PART commands may be entered individually or in PAGE/PART pairs where the "/"
is a delimiter signifying a PART command. The user should be cautioned that
when entering a PAGE/PART command pair, to be sure that the values specified
are both valid and accurate. The remainder of the display commands are either
GROUP specifications or commands that are meaningful in terms of GDR
processing. The following is a list and description of the various display
commands available during display processing:

ALL GROUPS displays all PAGEs of all PARTs of all GROUPs,
beginning with PAGEl/PARTI of the first GROUP
declared in the GROUP statement. In the case
where a <group name> is associated with more than

one PART, all PARTs will be paged down in the
logical sequence they were specified in.

ALL PAGES (AP) permits the user to display all PAGEs within the
currently specified PART.

6-30

I L LLJLL L

t--

LiJ LJ LiJ-
iI- I- - I- 1-- ~- ~ bI*4-

LL..

CL~ ~ ~ CrL L C

Ln Lr (p I ',I
Cn- Ln E

6-CE

-J ~~ ~ ~ a aao M ~ ~ ~ i ~ nN

4.4j ~j

'-44

U(

L& 0

6-4-

zt 0

A U4

-- 4

6-32

(T) U % .

a 0 .-4 un 0 CD 0 0 00 *0 00Q u v0

0U
c

LA.LL

Llf

_a a

p.1- 0r-4

aIm
663

(L.

4k-I

U-1 1-1 l l I)

=1 (fflflI.. UP (1fu Q'IUl Ul Ln(f) 1

0

0C-

0-4-"

- -P.4 >-w U
-

L) ~ t; -L > A.c

U t

a a: u

Li 0

6-34

LA -.) 0) a a

-j r 'D) rnL if .l~ () U) U)L V) ImL

-44-4

40
Li -i

-4 L L CJ LJLJ. L L.~ ~~~

LL Li

- E
0 c
LI Z

a. La..
i U

0I

a-4
~LLJ Li u* W

L.-

6-35

ALL PAGES/ALL PARTS[DOWN] displays all PAGEs of all PARTs within a single
GROUP. The optional DOWN allows the display
format to PAGE through each PART before beginning
the next PART. The default is to PAGE across
PARTs (with no PAGE incrementing) in a
wrap-around format.

/ALL PARTS (/AP) permits the user to view all PARTs within the
current GROUP (PAGE number remaining the same).

<CR> during interactive viewing, this command will
cause a PAGE advance (providing one exists).

during non-interactive viewing, the <CR> will
cause the next <display command> specified to be
processed. If all commands have been processed,
the GDR prompt will appear.

END terminates interactive display processing.

FIRST PAGE (FP) displays the first PAGE of the currently
specified PART.

<group name> specifies that the viewing window will be the
designated GROUP (PAGEl/PARTI is not specified).

LAST PAGE (LP) displays the last PAGE of the currently specified
PART.

/LAST PART (/LP) displays the same PAGE number of the last PART of
the current GROUP.

NEXT PAGE (NP) displays the next PAGE of the current PART
(unless you are already on the last PAGE in which
case you will receive an error).

/NEXT PART (/NP) displays the same PAGE number of the next PART in
the current GROUP (unless you are already on the
last PART in which case you will receive an error
message).

<nnn> displays the PAGE specified in the same PART.

/ <nnn> displays the same PAGE in the PART number
specified.

PAGE(P) <nnn> [THRU <nnn>] displays the PAGE specified in the PART you are
currently in. The optional THRU allows the user
to view requested PAGEs one after another.

6-36

I I lb

. /PART(/P) <nnn> [THRU <nnn>] displays the same PAGE in the PART specified.
The optional THRU allows the user to view all

requested PARTs of the currently specified PAGE.

PREVIOUS PAGE (PP) displays the PAGE immediately before the current

PAGE (unless you are already on the first PAGE in
which case you will receive an error).

/PREVIOUS PART (/PP) displays the same PAGE in the PART immediately
prior to the PART you are currently viewing
(unless you are currently in the first PART which
will cause an error message).

SAME PAGE (SP) this optional command will keep the display on

the same PAGE. It is also the default if no PAGE

command is specified.

/SAME PART (/SP) this optional command will keep the display on
the same PART. It is also the default if no PART
command is specified.

As a further example of how display commands are processed by GDR, the table
below illustrates how paging commands would be processed against a <group

name> that has 4 PARTs. It shows the starting screen display, the user's

input, and the final screen display following the command's execution:

START POSITION USER'S INPUT FINAL POSITION

PAGE2, PART3 NP PAGE3, PART3
PAGEI, PART2 NP/NP PAGE2, PART3
PAGE3, PART4 NP PAGE4, PART4

PAGE3, PART1 /NP PAGE3, PART2

PAGEl, PARTI /PP ERROR MESSAGE

PAGEl, PART3 Page 3/PP PAGE3, PART2
PAGEI, PART1 PP ERROR MESSAGE

PAGEl, PART3 NP/SP PAGE2, PART3
PAGE2, PART4 /AP Shows PAGE2 of all PARTs

(sequentially)

PAGE3, PART1 Page 1 THRU 3/Part 1 Shows PAGEs 1 THRU 3 of PARTI

(sequentially)

6.5 Directina Book Output to Printer. Through the DIRECT BOOK command, the

user has the capability to instruct GDR to create printed copies of the

contents of any BOOK locally or to send the BOOK to a remote host. The syntax

for the DIRECT BOOK command is:

DIRECT BOOK <book name> ON ONLINE <device-id>

[TO <host name>]

[COPIES <nnn>] IDENT "<ident line>" MARK <classification>.

S
6-37

The destination for the printed copies is defined as either an online printer
or a remote device. The default is ONLINE, which will cause the BOOK to be
directed to an online printer. Specifying ON, followed by a two character
printer ID, will cause the BOOK to be directed to the specified remote line
printer. The TO <host name> clause may be used to send the BOOK to another
WWMCCS site. The copies clause may be used to specify the number of 2opies
desired. The default is one copy. The IDENT clause must be specified. It
contains the accounting information required by a batch job. This information
must be enclosed in quotes. The MARK clause also must be specified. It
denotes the classification of the printed copies. The classification caveat
must be one of the following:

TZZ Top Secret
SZZ Secret
CZZ Confidential
UZZ Unclassified
ZZZ No Classification

Upon acceptance of the DIRECT BOOK command, the system will respond with a
SNUMB number which will serve to identify your printed output and must be used
when picking your job up. For example, if a user entered:

DIRECT BOOK BKAIRFLD ONLINE IDENT "JNGG" MARK UZZ.

The system response would be something like:

SNUMB 2840T

6-38

APPENDIX A

CIPSY EXECUTION SEQUENCE

S A-1

THIS PAGE INTENTIONALLY LEFT~ BLANK

A- 2

.GIPSY is composed of several independently executable load modules (H* files)
whose execution sequence is dynamically determined based upon user input
specifications and a predefined execution sequence initially loaded from
GIPSY's cue library. The execution sequence is reloaded from the DAFC after
each module is executed.

GIPSY is properly a TSS subsystem. It may be invoked from the terminal
keyboard by responding "GIPSY" to the Time Sharing System (TSS) standard input
request prompt or it may be invoked by a user program via DRL CALLSS. The
FORTRAN callable subroutine CALLSS accomplishes this for high order languages
(subroutine CALLSS is discussed in the Honeywell FORTRAN Subroutine Libraries
Manual (order number DD20). The FORTRAN calling sequence for invoking GIPSY
from a user program is

CALL CALLSS ("GIPSY command line syntax options #")

The argument on this call must be in ASCII.

However GIPSY is activated, the first four characters are used to identify the
command library kernel GIPS which is executed from CMDLIB/GIPS. This kernel
is hard-coded to invoke the GIPSY executive controller from the H* file
defined by the catalog file descriptor (cfd) LIBRARY/GIPSY/LOAD/..GIPSY. This
will be overridden if a file named ..GIPSY is in the Available File Table
(AFT) at the time of initiation. Control is transferred to the executive
controller via DRL RESTOR. Prior to this transfer of control, the entire
command line is retained and passed to the executive controller for syntactic
and semantic processing.

The executive controller (..GIPSY) attaches the cue library (hard-coded as
LIBRARY/GIPSY/LIBS/..CUELIB). The catalog file string for the environment and
terminal definition (..ENVIRO) file and the execution sequence of all GIPSY
modules are extracted from the cue library. The terminal is associated with
the terminal definition extracted from ..ENVIRO based on the station code
obtained from TSS. The command line statements are then processed. All
command line substitutions are applied to the execution sequence. The
execution sequence and all current semantics are written to the DAFC. The
executive controller then copies the status of all GIPSY internal parameters
to the DAFC and transfers control to the first module in the execution
sequence. If any module name is null, ..GIPSY automatically proceeds to the
next module in the sequence. If the executed module completes its task
successfully, it updates the DAFC to reflect its successful execution and to
reflect all alteration to global internal GIPSY parameters. If any module
fails to inform the executive controller to continue, the GIPSY session is
immediately terminated.

When the next module is placed into execution, it retrieves all relevant
communications (from the previous executed module) from the DAFC. The
execution sequence is also restored from the DAFC in order to pick up any
dynamic modification to the execution sequence that may have been applied by

A-3

the executing module.

The cue library (LIBRARY/GIPSY/LIBS/..CUELIB) contains the catalog-file
descriptor of all permanent files used by GIPSY (except of course the
executive controller and the cue library).

The execution sequence for GIPSY is defined as a linked list starting at cue
library message number 1000. Each message has a module identifier keyword
followed by the catalog-file string of the module to be executed. The module
identifier keyword is defined by virtue of its existence in the execution
sequence. Thus, as many modules and keywords as desired may be created and
added to the execution sequence linked list causing them to be automatically
defined and executed as part of GIPSY.

The default keywords and associated modules are:

PRE-MOD
PRE- SYNTAX
SYNTAX LIBRARY/GIPSY/LOAD/.. SYNTAX

POST-SYNTAX
PRE-DATSEL
DATSEL LIBRARY/GIPSY/LOAD/..DATSEL
POST-DATSEL
PRE-MTXGEN
MTXGEN LIBRARY/GIPSY/LOAD/..MTXGEN
POST-MTXGEN

PRE-DISPLA
DISPA LIBRARY/GIPSY/LOAD/..DISPLA
POST-DISPLA
PRE-GEOMOD
GEOMOD LIBRARY/GIPSY/LOAD/..GEOMOD
POST-GEOMOD
PRE-GDRMOD

GDRMOD LIBRARY/ GIPSY/LOAD/..GDRMOD
POST-GDRMOD

Keywords which do not have a corresponding module name (catalog file
descriptor) are considered to be null.

A-4

APPENDIX B

SYSTEM SUPPLIED SUBROUTINES

B-1

THIS PAGE INTENTIONALLY LEFT BLANK

B-2

GIPSY currently has a set of 32 system-supplied subroutines available to the
user. They are as follows:

$BODY-LINE
$BODY-PART
$BUILD-PROCESS
$BREAK-STATUS
$COMPARE-STRING

$DATE
$END-INPUT-PROCESSING
$END-PROCESS
$EXIT
$FILL-STRING
$INITIAL-PROCESS
$ISPPTR
$LINES-LEFT
$MOVE-STRING
$MOVE-TEXT

$OUTPUT
$PAGE-NUMBER
$PICTURE
$PRINT-DATE
$PRINT-TIME
$RECORD-EXCLUDE
$RECORD-HOLD
$RECORD-INCLUDE
$RECORD-SET
$RECORD-READ
$SPLIT-CATALOG

$STRING-LENGTH
$TERMINALID
$TERMINAL-TYPE
$TIME
$TOTAL-PAGES
$USERID

Each of these subroutines is described in detail on the following pages.

In general, subroutines are executable statements that are invoked in field
table structures, the QUALIFY command, and in the RETRIEVE command.
Subroutines are denoted by a dollar sign. Not all subroutines have universal
applicability throughout the system. Specifics are noted in the following
paragraphs.

Some subroutines return values and are subsequently assigned in data moves
(i.e., TODAY-DATE - $DATE). Other subroutines do not return values but cause
a specific action to happen (i.e., $EXIT IF COUNT GT 100 will terminate field
table processing when COUNT is greater than 100).

B-3

SBODY-LINE

Subroutine $BODY-LINE will return the number of the current body line count of
a page being processed within the record output table. The syntax for this
statement is:

$BCDY LINE (<rar- number>) [<conditional expression>]

where <part number> is the specific part for which you want the body line
count.

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example will print a dividing line separating the header from
the body of the report. The statement will be executed when the body line
count for part 1 is equal to line 1:

DIVIDER - "------------------------
LINE DIVIDER IF $BODY-LINE(l) EQ 1.

$BO'Y- PART

Subroutine $BODY-PART will return the part number currently being processed in
the record output table. The syntax for this statement is:

$BODY-PART [<conditional expression>] .

where <conditional expression> requires a set of conditions o be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example illustrates this subroutine in a conditional expression:

GROUP INDEX - 1, WATERTYPES - 2:3:4:5:6:7.
HEADER TABLE.

LINE "WATERWAYS OF THE WORLD"
CENTERED IF $BODY-PART BT 2/7.

The literal "WATERWAYS OF THE WORLD" will be centered in the heading whenever
the current body part is part of the group called WATERTYPES (i.e., between 2
and 7).

SBUILD-PROCFSS

Subroutine $BUILD-PROCESS accepts commands within a field table that are

executed outside of field table structures. The $BUILD-PROCESS subroutine is
part of the build process block structure. The build process block structure
consists of an opening statement, $INITIAL-PROCESS, one or more

B-4

.$BUILD-PROCESS, and the closing statement ($END-PROCESS). When the highest
level of field table has been executed, the $BUILD-PROCESS commands that were
accepted in the field table are executed. The syntax for this statement is:

$BUILD-PROCESS {<variable>" } [<conditional expression>

where "literal" is a GIPSY command that is processed outside of a field
table or the variable contains the GIPSY command.

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, a book will be built based on a previously set flag.
Note that the statement "TRANSFER TO GDR." was assigned to a variable and the
variable is part of the BUILD-PROCESS:

FIELD TABLE.
TRA-CMD - "TRANSFER TO GDR.".
$INITIAL-PROCESS.
$BUILD-PROCESS (TRA-CMD)
$BUILD-PROCESS ("BUILD OUTPUT WATER TO X.")

IF WTRFLAG.
$BUILD-PROCESS ("BUILD OUTPUT CITIES TO X.")

IF CTYFLAG.
$END-PROCESS.

$BREAK-$TATUS

Subroutine $BREAK-STATUS returns a code indicating that a break has been
entered on a Visual Information Projection (VIP) terminal. The syntax for
this statement is:

$BREAK STATUS.

In the following example, the message "BREAK ACKNOWLEDGED" will be written to
the screen (by a user-supplied subroutine) when a break is entered:

FIELD TABLE WHEN $BREAK-STATUS.
$DISPLAY ("BREAK ACKNOWLEDGED").
$DISPLAY-OUT.

END.

$ COMPARE- STRING

Subroutine $COMPARE-STRING compares a specified set of characters of one
string with a specified set of characters of another, setting one of two

logical variables to "true" based on the outcome of the comparison.

B-5

The syntax for this statement is:

$COMPARE-STRING (<variablel>, <startl>, <lengthl>,
<variable2>, <start2>, <length2>,
<logicall>, <logical2>)
[<conditional expression>]

where <variablel> contains the character string to be compared.

where <startl> is the starting position within <variablel>. This may be
a variable or a numeric literal.

where <lengthl> is the number of characters of <variablel> to compare.
This may be a variable or a numeric literal.

where <variable2> contains the string to compare against <variablel>.
This may also be a literal.

where <start2> is the starting position within <variable2>. This may be
a variable or a numeric literal.

where <length2> is the number of characters of <variable2> to use in the
comparison. This may be a variable or a numeric literal.

where <logicall> is the logical variable that is set to "true" when the
compcrison is exactly equal.

where <logical2> is the logical variable that is set true when the
comparison is not equal and the characters in the string of <variable2>,
are alphabetically greater thar, the characters compared with in
<variablel>.

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, the first 4 characters of TEXT are compared with the
4 characters of the literal FOUR. When there is an exact match, the logical
variable EQUAL will be set to "true". When there is no match, and the literal
FOUR is alphabetically greater than the contents of the data record, then the
logical variable GT will be set to "true":

(Data File)
ONE
TWO
THREE
FOUR
ELEVEN
TWELVE
THIRTEEN

B-6

FOURTEEN
FIFTEEN

BUILD QDT. ADD.
TEXT 1 A8.
EQUAL * L.

GT * L.
END.
OUTPUT TABLE NAMED TEST.
BODY TABLE.

$COMPARE-STRING (TEXT,1,4,"FOUR",1,4,EQUAL,GT).
LINE TEXT CENTERED IF EQUAL.
LINE TEXT RIGHT JUSTIFIED IF GT.

END BODY.
END OUTPUT.
BUILD OUTPUT TEST TO XYZ.

A display of book XYV would result in the following output:

FOUR
ELEVEN

FOURTEEN
FIFTEEN

GT was set true for only ELEVEN and FIFTEEN because the literal FOUR was
alphabetically greater than either ELEV or FIFT.

. S DATE

Subroutine $DATE accesses the system date kept internally in the mainframe and
returns it to the user in the format HMDDYY. The result is placed in a
previously defined field. This subroutine is not valid in the record output
table. The syntax for this statement is:

$DATE [<conditional expression>]

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The statement:

RUN-DATE - $DATE.

will assign the current date to the field RUN-DATE during execution of the
field table in which the statement resides. The field RUN-DATE must be a 6
character field.

B-7

SEND-INPUT-PROCESSING

Subroutine $END-INPUT-PROCESSING is used within a field table for data

selection. This subroutine, used in conjunction with a "SET AUTO FILE INPUT

OFF." command, indicates the end of data selection. The syntax for this
statement is:

$END-INPUT-PROCESSING [<conditional expression>]

where <conditional expression> requires a set of conditions to be

satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, data selection will be exited when LENGTH is greater

than 5,000 ft:

SET AUTO FILE INPUT OFF.

FIELD TABLE.

$END-INPUT-PROCESSING IF LENGTH GT 5000.

END.

SEND-PROCESS

Subroutine $END-PROCESS defines the closing statement of the build process
block structure. The build process block structure consists of an opening

statement, $INITIAL-PROCESS, one or mol $BUILD-PROCESS statements and the

$END-PROCESS statement. The syntax for this statement is:

$END-PROCESS.

In the following example, the statement "TRANSFER TO GDR." will be executed

after the field table containing the build process structure is executed and
control is returned to GIPSY's command level:

FIELD TABLE.

$INITIAL-PROCESS.
$BUILD-PROCESS ("TRANSFER TO GDR.").

$END-PROCESS.

END.

B-8

SEXIT

Subroutine $EXIT is used to suspend normal field table processing. When this
subroutine is invoked with a nested field table structure, all levels of field
tables are exited. Processing is returned to the GIPSY command immediately
following the END statement of the highest level field table structure. The
syntax for this statement is:

$EXIT [<conditional expression>]

where <conditional expression> require a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions:

FIELD TABLE.
LENGTH - LEN:"FT".

FIELD TABLE.
$EXIT IF BAD-RECORD.
ADD 1 TO COUNT.

END.
* END.

The execution of these fields will cause the literal "FT" to be concatenated
to the field LEN and will add 1 to the field "COUNT" if the logic variable
BAD-RECORD is false.

SFILL-STRING

Subroutine $FILL-STRING uses the contents of a variable or a literal to
completely fill all the positions in a receiving variable. The syntax for
this statement is:

$FILL-STRING { <variable> } [<conditional expression>]

where <variable> or "literal" contains the string to be used for filling
the receiving variable.

where <conditional expression> requires a set of conditions to be
satisfied before subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example will use the contents of variable STAR to fill the 20
character field ALPHA when PAX equals zero:

B-9

ALPHA - $FILL-STRING (STAR) IF PAX EQ 0.

$INITIAL-PROCESS

Subroutine $INITIAL-PROCESS defines the opening statement of the build process
block structure. The build process block structure consists of this opening
statement, one or more $BUILD-PROCESS statements and the closing statement,
$END-PROCESS. The syntax for this statement is:

$INITIAL-PROCESS.

In the following example, the statement "SET SIZE LARGE." will be executed
after the field table containing the build process structure is executed and
control is returned to GIPSY's command level:

FIELD TABLE.

$INITIAL-PROCESS.
$BUILD-PROCESS ("SET SIZE LARGE.").
$END-PROCESS.

END.

$ISPPTR

Subroutine $ISPPTR returns an Indexed Sequential Processor (ISP) record
pointer value which is used to build an index file. This routine is only
valid when the user's data file is an ISP file and when the subroutine is used
prior to data selection. The subroutine value is assigned to previously
defined field in the FDT structure. The syntax for this statement is:

$ISPPTR.

In the following example, the field POINTER-VAL will contain a pointer to the
beginning of each STATE-CODE after the field table is processed against the
ISP data file:

BUILD FDT.
ADD.
POINTER-VAL * A6.

END.
FIELD TABLE WHEN STATE-CODE CHANGES.

POINTER-VAL - $ISPPTR.

END.

SLINES-LEFT

Subroutine $LINES-LEFT will return the number of body lines left on the
current page being processed within the record output table. The syntax for this

B-10

statement is:

$LINES-LEFT (<part number>) [<conditional expression>]

where <part number> is the specific part for which the body line count of
lines left o. the page is being calculated.

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example illustrates this subroutine used within a conditional
expression to determine when the field table is to be executed:

FIELD TABLE WHEN $LINES-LEFT(l) EQ 0 AND NOT COUNTRY-CODE CHANGES.
SPACE 1.
LINE COUNTRY-NAME: "(CONTINUED)" COL 10.
SPACE 1.

END.

Execution of the field table will cause the name of the country to be printed
at the top of the next page provided there are no remaining lines on the
current page and the country being processed does not change.

SHOVE- STRING

S Subroutine SHOVE-STRING allows the moving of partial fields from one variable
to another, allowing the precise placement of data within the destination
variable. The syntax for this statement is:

$HOVE-STRING (<variablel>, <startl>, <charsl>,
<variable2>, <start2>, <chars2>)
[<conditional expression>]

where <variablel> is the receiving field and must be defined as type
alphanumeric.

where <startl> is the starting position within the receiving field to
begin placing data. This may be a numeric literal or a variable field.

where <charsl> is the number of characters of data being moved. This may
be a numeric literal or a variable field.

where <variable2> is the source field from which to extract the data and
which must be defined as type alphanumeric.

where <start2> is the starting position within the source field from
which to begin extracting data. This may be a numeric literal or a
variable field.

B-11

where <chars2> is the number of characters being moved from the source
field. This may be a numeric literal or a variable field.

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, assume CLIST is defined as A80 and CHOLD is defined
as A10. The first 2 characters of CHOLD will be moved into positions 5 and 6
of CLIST:

$MOVE-STRING (CLIST, 5, 2, CHOLD, 1, 2).

In the next example, ALPHA is defined as A40 and STAR as Al containing a
single asterisk. As a result of the execution of this subroutine, ALPHA will
contain 1 asterisk in position 1 followed by 39 blanks:

$MOVE-STRING (ALPHA, 1, 40, STAR, 1, 40).

If no blanks are desired, charsl and chars2 should be equal:

$MOVE-STRING (ALPHA, 1, 40, STAR, 1, 40).

After execution, ALPHA would contain 40 asterisks.

$MOVE- TEXT

Subroutine $MOVE-TEXT allows the positioning a variable string or literal
within another variable string either centered, right-justified, or
left- justified. The syntax for this statement is:

SMOVETEXT { <variable name> }
$MOVE-TEXT " literal" , <pos nbr> [<conditional expression>]

where <variable name> is the field to be moved.

where <pos nbr> is the desired position number; valid numbers are "l" for
centered, "2" for left-justified, and "3" for right-justified.

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example centers the contents of the 6 character field COLOR
within the 20 character field ALPHA:

ALPHA - SMOVE-TEXT (COLOR, 1).

B-12

$OUTPUT

Subroutine $OUTPUT is used within a field table for data selection. This
subroutine writes the record being processed to the QDF. A $OUTPUT subroutine
will override a "SET AUTO QDF OUTPUT OFF" command. If a record output table
is specified, the records will be written to the QDF in the record output
table format. The syntax for this statement is:

$OUTPUT [<conditional expression>]

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, the record will be written to the QDF when TYPE is
equal to "Al" in the format "TYPE RECORD", type:

SET AUTO QDF OUTPUT OFF.
FIELD TABLE.

$OUTPUT IF TYPE EQ "Al".
END.
RECORD OUTPUT TABLE.

FIELDS "TYPE RECORD", TYPE.
END.

$PAGE-NUMBER

' Subroutine SPAGE-NUMBER will output the current page number of the specified
part within the record output table. The syntax for this statement is:

$PAGE-NUMBER (<part number>) [<conditional expression>].

where <part number> is the specific part for which the page number is to
be output.

where <conditional expression> requires a set of conditions to be

satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example the page number of the current value of XPART will be
placed in variable PPAGE for later reference. This is useful when retaining
page numbers for output as an index to the report:

PPAGE - $PAGE-NUMBER (XPART).

Subroutine $PICTURE converts a binary integer field or integer field into its

integer equivalent and formats the resulting number with a COBOL-like edit
mask. The syntax for this statement is:

B-13

$PICTURE (<variable name>, "<picture mask>") [<conditional expression>]

where <variable name> is any previously defined field.

where <picture mask> is the COBOL-like edit mask (any combination of Z's,
9's, dollar signs, plus signs, minus signs, commas, or decimal points).

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example will convert the binary integer in STATNUM,
zero-suppress the result, and place it in OUTNUM. OUTNUM may be alphanumeric,
integer, or binary integer and can be printed as a decimal number. Note that
a binary integer is a 6 digit field:

OUTNUM - $PICTURE (STATNUM,"ZZZZZ9").

SPRINT-DATE

Subroutine $PRINT-DATE will output the date the report is generated in the
record output table as an output element to a specified location. The syntax
for this statement is:

$PRTNT-DATE r "cnditional expLession>].

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, the current date will be left-justified in the
heading for PART 1. The format for the date is dd/mmm/yy (i.e., 11/MAY/86):

HEADER TABLE PART 1.
LINE $PRINT-DATE LEFT JUSTIFIED.

SPRINT-TIME

Subroutine $PRINT-TIME will output the current time as an output element
within the record output table to a specified location. The syntax for this
statement is:

$PRINT-TIME [<conditional expression>].

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example will left justify the current time in the heading for
PART 3. The format for the time is the standard military format (HH:MM):

B-14

HEADER TABLE PART 3.

LINE $PRINT-TIME LEFT JUSTIFIED.

$RECORD-EXCLUDE

Subroutine $RECORD-EXCLUDE will exclude the current record from the QDF
process regardless of the QUALIFY in effect. This routine is used within a
field table QUALIFY. The syntax for this statement is:

$RECORD-EXCLUDE [<conditional expression>].

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example illustrates this subroutine in a conditional expression.

Records will be excluded when QTYPE (which is a QUALIFY field) is equal to
BAY:

FIELD TABLE QUALIFY.
QTYPE - TYPE.
$RECORD-EXCLUDE IF Q TYPE EQ BAY.

END.

SRECORD- HOLD

SSubroutine $RECORD-HOLD will hold the current record intact for the next
qualified record request during QDF processing. The record that is held is
evaluated against the same criteria as the next record that is processed.
This subroutine is very useful when processing hierarchical QDF structures.
It is used within a field table for QUALIFY. The syntax for this statement
is:

$RECORD-HOLD [<conditional expression>].

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, the record will be held for comparison with the next
record's criteria when the field RECORD-NBR is not equal to the contents of
the field NFMS:

FIELD TABLE QUALIFY
ADD 1 TO RECORD-NBR.
$RECORD-HOLD IF RECORD-NBR NE &NFMS.

END.

S B-15

SRECORD- INCLUDE

Subroutine $RECORD-INCLUDE will include the current record from the QDF
process regardless of the QUALIFY statement. This routine is used within a
field table for QUALIFY. The syntax for the statement is:

$RECORD-INCLUDE [<conditional expression>].

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, the subroutine will cause all records to be included
when QCOUNTRY is equal to USA:

FIELD TABLE QUALIFY.
QCOUNTRY - COUNTRY.
$RECORD-INCLUDE IF QCOUNTRY EQ USA.

END.

SRECORD-SET

Subroutine $RECORD-SET is used in conjunction with subroutines $RECORD-INCLUDE
and $RECORD-EXCLUDE. Subroutine $RECORD-SET will include or exclude the
current record from the QDF based on the condition of the previous record. If
the previous record qualified, the current record qualifies; if the previous
record did not qualify, the current record does not qualify as well. The
field table QUALIFY is activated by the QUALIFY command. The syntax for this
statement is:

$RECORD-SET [<conditional expression>]

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example will process a sequence of numbers resulting in all
numbers between 1 and <n> being processed except 03, 04, 07, 08:

FIELD TABLE QUALIFY.
QNUM - NUM.
$RECORD- SET.
$RECORD-INCLUDE IF QNUM EQ 01, 05, 09.
$RECORD-EXCLUDE IF QNUM EQ 03, 07.

END.

Subroutine $RECORDS-READ will return the number of records read during data

selection. The syntax for this statement is:

B-16

$RECORDS-RAD [<conditional expression>].

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, variable NUMREC provides a counter of the number of
records read. Processing of records will be halted when NUMREC is greater
than 15:

FIELD TABLE.
NUMREC - $RECORDS-READ.
$END-INPUT-PROCESSING IF NUMREC GT 15.

END.

$SPLIT-CATALOG

Subroutine $SPLIT-CATALOG expands each entry in a given catalog file string to
a full 12 characters, padding shorter entries with blanks and using the slash
as a delimiter. The result is assigned to a receiving variable, which can
then be used to check for valid catalog names or files. The syntax for this
statement is:

$SPLIT-CATALOG valiteral [<conditional expression>]

where <variable> or "literal" contains the catalog file string to be
~expanded.

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is e-.ecuted. See section 3.2.6 for an
explanation of conditional expressions.

The following example uses a data file of catalog file strings and
$SPLIT-CATALOG to decide which field table to execute. In this case, when the
catalog file string for FILEI is processed, GIPSY is exited:

Data file:
8371DPXO/GIPSY/DATA/FILEO9

8371DPXO/GIPSY/DATA/FILE22
837IDPX0/GIPSY/DATA/FILE1

BUILD FDT.

ADD.
CAT-STRING 1 A30.
CAT-CHECK * A60.

END.

CAT-CHECK - $SPLIT-CATALOG (CAT-STRING).

B-17

FIELD TABLE WHEN CAT-CHECK (37/41) EQ FILEl
$INITIAL-PROCESS
$BUILD-PROCESS("//NOTE GIPSY TERMINATING").
$BUILD-PROCESS("DONE.").
$END-PROCESS.

END.

SSTRING-LENGTH

Subroutine $STRING-LENGTH returns the number of characters in a given variable
string. The syntax for this statement is:

$STRING-LENGTH (<variable name>) [<conditional expression>].

where <variable name> is any 12 character field name defined in the FDT
or QDT.

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example will find the length of the variable INPUT-STR and place
it in the variable STR-LEN:

STk-LEN - $STRING-LENGTH (INPUT-STR).

0RNALID

Subroutine $TERMINALID returns the 2 character code for the terminal currently
logged on. The syntax for this statement is:

$TERMINALID [<conditional expression>].

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example controls the processing of future statements by
determining if the PCS is being executed in batch or TSS:

BUILD FDT.
ADD TO GLOBAL.

TERMINALID * A2.
BATCH * L.

END.
FIELD TABLE FOR INITIAL.
TERMINALID - $TERMINALID.
BATCH - TRUE IF TERMINALID EQ "**.

END.

B-18

STERMINAL- TYPE

Subroutine $TERMINAL-TYPE returns the terminal type currently logged on during
rur time, and as defined to GIPSY in the . .ENVIRO file. The syntax for this
statement is:

$TERMINAL-TYPE [<conditional expression>]

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example will print out a 6 digit field, "000009", for a

Tektronix 4027 terminal:

LINE $TERMINAL-TYPE LEFT JUSTIFIED.

The next example will set the output of the report based on the type of
terminal:

SET OUTPUT 80 BY 30 IF $TERMINAL-TYPE EQ "000009".

$TIME

Subroutine $TIME accesses the system time kept internally in the mainframe and
returns it to the user in standard military time format (i.e., 1600 for 4:00Opm). The syntax for this statement is:

$TIME.

The statement:

RUN-TIME - $TIME.

would assign the current time to the field RUN-TIME during execution of the
field table in which the statement resides. This subroutine is not valid in
the record output table.

STOTAL-PAGES

Subroutine STOTAL-PAGES returns the total number of pages for the specified
part of a report being processed within the record output table assuming that
the "TOTAL PAGES." command has been specified. The syntax for this statement
is:

$TOTAL-PAGES (<part number>) [<conditional expression>)

where <part number> is the specific part for which a total page count is
desired.

B-19

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

In the following example, "PAGE n of nn" will be left-justified in the heading
for PART 2:

HEADER TABLE PART 2.
LINE "PAGE ":$PAGE-NUMBER(2) PIC "Z,ZZ9": " OF ":$TOTAL-PAGES(2)

PIC "ZZ,ZZg" COL 65 LEFT JUSTIFIED TEXT COMPRESSED.

$USERID

Subroutine $USERID returns the userid of the person currently logged on to the
system. The syntax for this statement is:

$USERID [<conditional expression>].

where <conditional expression> requires a set of conditions to be
satisfied before the subroutine is executed. See section 3.2.6 for an
explanation of conditional expressions.

The following example will print out the userid of the person processing the
report:

LINE $USERID LEFT JUSTIFIED.

The next example will prohibit a user from executing the PCS unless their
userid is valid:

FIELD TABLE WHEN $USERID NE "DJBXI344CB"
"DJ8XC344AP"
"DJ8X1344CI"

$INITIAL-PROCESS.
SBUILD-PROCESS ("DONE.").
SEND-PROCESS.

END.

B-20

APPENDIX C

FIELD TABLES

0C-I

THIS PAGE INTENTIONALLY LEFT BLANK

c-2

APPENDIX C. FIELD TABLES

The Field Table is a set of commands and conditions for execution of those
commands that may be used to modify data fields, fill in new data fields, move
data around, perform counts and calculation, execute user-written subroutines,
and a number of other data manipulation services. For discussion purposes,
consider the following scenario:

Each record in the user's data base consists of a one-character service
code (A - Army, F - Air Force), a one-character equipment code (T -
Tanks, P - Planes, R - Rifles), and the total number of pieces of that
equipment for that service. Using the GIPSY commands previously
discussed in this manual, the user can produce a report (sorted on
service code) that looks like this:

SERVICE EQUIPMENT NBR-EQUIP

A T 517
A P 249
A R 388
F T 151
F P 1275
F R 755

The above report is only meaningful to someone who knows the data base and the
translation of the codes. A more meaningful report would be the following:

SERVICE EQUIPMENT NBR-EQUIP

ARMY TANKS 517
PLANES 249
RIFLES 388

AIR FORCE TANKS 151
PLANES 1275
RIFLES 755

GIPSY's data manipulation capability gives the user the tools he/she needs to
produce meaningful output. These tools are contained in a structure called
the Field Table. The Field Table is the basis of all data manipulation
throughout GIPSY.

All field manipulation performed in a Field Table can be described as a data

assignment. That data assignment may be a simple movement of data from one
field to another or a very complex mathematical or composite assignment which

is conditionally applied.

CA Data Fields

The Field Table data manipulation capabilities can operate on data fields

P C-3

which exist in the user's file and described in the basic file or it can
operate on newly created data fields that are added to the data record at
execution time. The FDT building capability is used to define both of these
types of fields. The Field Table is used to load data into these fields based
on data retrieval from the file, processing conditions, and literals. Most
field table data manipulation occurs in the classic assignment statement form:

<receiving field> - <assignment definition>.

The <receiving field> is typically a new field that is created by extending
the record buffer as discussed below. The receiving field may be a field from
the basic file. However, this is not normally done since it would destroy the
original data extracted from the user data base. The discussions in this
appendix will assume use of the extended fields since use of the basic data
field appears to have limited value. The <assignment definition> may be
anything from a literal assignment to a complex conditional assignment within
a loop-controlled processing structure.

C.l.l Extended Field Definition. An extended field is a field that is not in
the user's data base but a "work space" for GIPSY to use. As each data base
record is read into GIPSY's record processing area (the "record buffer"), an
"extended field buffer" is logically connected to that record buffer. This
extended field buffer is a totally separate, self-contained entity that has no
impact on the record buffer.

The size of the extended field buffer is determined by the size of all of the
defined extended fields. Extended fields can't be used in a Field Table
structure until they are defined.

Defining extended fields to GIPSY is accomplished in the "BUILD FDT" structure
which is discussed in section 3.2.5.1. The syntax used in defining extended
fields is the syntax used to define data base fields:

<field name> <starting position> <data type> [<data length>]

The <field name> of an extended field has the same restrictions as the name of
a data base field: a 12-character limit with no imbedded blanks and no
duplication of names. With extended fields, the name duplication restriction
applies not only to other extended field names but to data base field names as
well. In other words, all fields being defined to GIPSY must have unique
names.

The <starting position> of an extended field is not known by the user. GIPSY
assigns starting positions to extended fields based upon the length of the
previously defined extended field. Even the length of some field types is not
known by the user so he/she cannot consistently compute the <starting
position> of extended fields. GIPSY, however, does know the length of the
previous field. An asterisk ("*") is used in the <starting position> location
of the command to tell GIPSY that the field being defined is to be an extended
field and to assign a <starting position> to that field.

C-4

As with data base field definitions, each extended field can have subordinate
fields associated with it. For instance, a DATE field of six characters may
also be broken into DAY, MONTH, and YEAR fields. The user wants to be able to
reference the entire DATE as well as the individual DAY, MONTH, and YEAR in
the retrieval. The section of the "BUILD FDT" structure that defines this
configuration is:

DATE * A6
DAY DATE(l) A2
MONTH DATE(3) A2
YEAR DATE(5) A2

The DAY field starts in the first character of DATE, the MONTH field starts in
the third character of DATE, and the YEAR field starts in the fifth character
of DATE.

The <data type> and <data length> criteria used in defining extended fields
are identical to those used for the definition of data base fields. The
various data types are outlined below for ease of reference:

GIPSY Code Definition Data Length Given

A Alphanumeric YES
I Integer YES
F Floating Point YES
C Coordinate YES
L Logic NO
BI Binary Integer NO
BF Binary Floating Point NO

If each record of a user's data base is 30 characters in length and two
extended fields for some data manipulation purpose are desired, the "BUILD
FDT" structure might look like this:

BUILD FDT.
ADD.

FIELD-A 1 A6.
FIELD-B 7 A6.
FIELD-C 13 13.
FIELD-D 16 C15.
FIELD-E * A2.
FIELD-F * A12.

END.

Because there is no actual connectivity between the record buffer and the
extended buffer, file fields and extended fields can be intermixed when
defining the FDT.

p C-5

BUILD FDT.
ADD.

FIELD-B 7 A6.
FIELD-F * A12.
FIELD-D 16 C15.
FIELD-E * A2
FIELD-C 13 13.
FIELD-A 1 A6.

END.

C.1.2 The Field Table Structure. The field table is a block structure. This
block consists of a field table statement, one or more executable statements,
and a terminating statement. The formal format of the block structure is:

FIELD TABLE [<type identifier>] [<execution control clauses>]
executable statements

END [<end options>]

There are several types of field tables. Each type of field table will be
discussed in section C.2.

It is important to note that the definition of a field table and its execution
take place at two different times during a GIPSY run. This subparagraph
concerns itself only with the definition of the overall "block" structure.
Field table execution is discussed in the paragraphs that discuss specific
field tables.

C.1.2.1 The Field Table Statement. The opening statement of a field table
provides all of the controlling information for subsequent field table
execution. The controlling information includes:

a. Field Table type

b. Field Table name

c. When to execute the Field Table

d. How many times to execute the Field Table

The specific syntax for the opening sentence of each type of field table is
given in the paragraph that discusses that field table type. The general
syntax of the opening sentence is:

FIELD TABLE [<type identifier>] [FOR <for clause>] [NAME <name>]
(WHEN <when clause>] [REPEAT <repeat clause>].

The <identifier> must be the first piece of any field table structure opening
sentence. All of the other pieces (NAMED, FOR, WHEN, and REPEAT) are order-
independent and optional. The following paragraph discusses each component
part of the opening sentence.

c-6

The <type identifier> denotes the specific type of field table that is being
built. It generally consists of the keywords FIELD TABLE followed by a
keyword identifying the structure to which it applies. The particular
<identifier> required for each specific field table type is defined in the
paragraph that describes that field table type.

The <for clause> denotes which data record (first, last, intermediate) is to
be used. The key word "FOR" must precede the <for clause>. The options
available in the <for clause> and which data record each option specifies for
use during execution of this field table structure are:

For Clause Data Record

INITIAL First record
FILE Intermediate records
FINAL Last record

The <name clause> is used to assign an understandable name to a field table.
The naming requirements for each individual type of field table are discussed
in section C.2. The name can be up to 36 characters in length. Imbedded
blanks are not allowed in the name; a hyphen ("-") may be substituted for a
blank in order to separate words in a name. If the user has a field table
that builds a meaningful date from an integer data field, the name the "BUILD
DATE FIELD" could not be used. However, the name "BUILD-DATE-FIELD" could be
used. One very important note about the <name clause>. All field tables with
the same name are combined into one structure upon definition.

* Both the <when clause> and <repeat clause> use standard conditional
expressions as defined earlier in this manual. Any embedded conditional
expression must be terminated with a semicolon (;). The <when clause> is used
to tell GIPSY when to execute the field table. Only data records which
satisfy the <when clause> will be processed against the body of the field
table.

The <repeat clause> is used to tell GIPSY how many times the field table is to
be executed:

WHILE <conditional expression>
UNTIL <conditional expression>
FOR <n> TIMES [OR UNTIL <conditional expression>]
VARYING <varying parameters>

The parameter <n> in the FOR phrase is the number of times to repeat the field
table. It may be a numeric constant, a mathematical expression (enclosed in
parentheses), or a field name.

The structure of the <varying parameters> is <vary field> FROM <start> TO
<end> [BY <increment>] [OR UNTIL <conditional expression>].

The <vary field> is the field which is to serve as a counter for comparison

*C-7

against the <end> number for determining the execution termination. This
field must be an extended field.

The <start> parameter is the initial value to which the <vary field> is set.
It may be a numeric literal, a mathematical expression, or field name.

The <end> parameter is value against which <vary field> is compared. The
field table structure will not execute once <vary field> is greater than
<end>. It may be a numeric literal, a mathematical expression, or field name.

The <increment> parameter is the numeric value by which the <vary field> will
be incremented after each execution of the field table body. If not
specified, a value of one is assumed. The <increment> may be a numeric
literal, a mathematical expression, or field name.

REPEAT WHILE will cause the field table to repeat only while the conditional
expression is true. The truth of the conditional expression is tested prior
to execution. Therefore, the minimum number of executions is zero.

REPEAT UNTIL will cause the field table to repeat until the conditional
expression is true. The truth of the conditional expression is tested
following execution. Therefore, the minimum number of executions is one.

REPEAT FOR will cause the field table to repeat the number of times specified.
The current repeat count (held internally by GIPSY) is incremented and tested
against the number of times specified following execution. Repeat execution
will terminate as soon as the current count is greater than the specified
number. Therefore, the minimum number of executions is the number of times
specified, or zero if the specified number of times is equal to zero or it is
a negative number (unless the optional OR UNTIL clause is also specified). If
the OR UNTIL clause is present on a REPEAT FOR, the minimum number of
executions will be one since the conditional expression of the OR UNTIL clause
is tested after execution.

REPEAT VARYING, will cause the field table to repeat the number of times
specified in the FROM/TO/BY span. The current repeat count (held by the <vary
field> and beginning at <start>) is incremented and tested against the <end>
count. Repeat execution will terminate as soon as the value in <vary field>
is greater than the <end> count. The minimum number of executions is
determined by the FROM/TO/BY span unless the optional OR UNTIL clause is also
specified. If the OR UNTIL clause is present on a REPEAT VARYING, the minimum
number of executions will be one since the conditional expression of the OR
UNTIL clause is tested after execution. Upon termination, the <vary
field> retains the last value assigned regardless of the reason execution was
terminated.

Some examples of the field table statements and their meanings during
execution are listed below:

C-8

FIELD TABLE.

This denotes that a field table is to be executed against every
record in the data base.

FIELD TABLE WHEN SERVICE-CODE EQ ARMY.

This statement denotes that a field table is to be executed against
each record of the data base only when the field "SERVICE-CODE" of
the record is equal to "ARMY".

FIELD TABLE FOR INITIAL REPEAT VARYING COUNTER FROM 1 TO 10.

This statement denotes that a field table will be executed against
the first record of the data base until the extended field "COUNTER"
is greater or equal to ten. "COUNTER" will be incremented by one
(the default) after every execution of the field table structure.
Note that this also means that the field "COUNTER" will be equal to
"10" after the final execution of field table structure.

FIELD TABLE WHEN SERVICE-CODE EQ A; REPEAT 5 TIMES.

This field table will be executed five times against each record in
the data base whose field "SERVICE-CODE" is equal to "A". Note the
semicolon (";") which separates the <repeat clause> and the
<conditional expression> from the <when clause>.

S FIELD TABLE REPEAT UNTIL SERVICE-CODE CHANGES; WHEN SERVICE-CODE EQ A.

This field table will be executed against each record in the data
base whose field "SERVICE-CODE" is equal to "A" and will be repeated
until the field "SERVICE-CODE" changes from "A" to something else.
Note the semicolon (";") which separates the <repeat clause> and
the <conditional expression> from the <when clause>.

FIELD TABLE REPEAT WHILE NAVY.

This field table will be executed against a record in the data base
as long as the logic field "NAVY" is set to "TRUE". Once the logic
field "NAVY" is set to "FALSE", this field table structure will stop
executing when the end of the structure is reached. If the logic
field "NAVY" is "FALSE" at the start, this structure will never
execute.

FIELD TABLE FOR FINAL REPEAT FOR 10 TIMES OR UNTIL STOP-CODE.

This statement denotes that the field table will be executed only
after the last record in the data base is read. It will stop
executing when it has either executed 10 times or the logic field
"STOP-CODE" is set to "TRUE".

10 C-9

C.1.2.2 The Executable Statement. There are seven types of executable
statements which may be included in the field tables. The types are:

a. Alphanumeric Move to move alphanumeric data to another field

b. Numeric Assignment - to assign the value of a number field to another
field

c. Mathematical Assignment - to capture the result of a computation

d. User Subroutine - to perform some function not supported by GIPSY
itself

e. Field Routine - to execute a predefined set of data manipulations

f. Concatenated Move to concatenate several pieces of data into a
single field

g. Nested Field Table - to execute a previously defined field table.

Each type is discussed below. The executable statements of a field table must
be placed between the opening sentence and the terminating sentence at the
field table.

The general form of an executable statement is

<receiving field> - <assign clause> [IF <conditional expression>].

The <receiving field> is a pre-defined field which is to receive the result of
the <assign clause>. Data will be assigned to the <receiving field> according
to the type that is assigned to that field. Data moved into an alphanumeric
<extended field> will be left-justified and blank-filled. Data moved into an
integer or real <extended field> will be right-justified and blank-filled.

The <assign clause> identifies results which are to be moved to the <receiving
field>. All data manipulation occurs in the <move field> portion of the
statement.

There are some exceptions to this general form. Those exceptions will be
discussed with the detailed syntax.

The illustrations in the remaining discussion will be based on the following
sample FDT:

BUILD FDT.
ADD.

SERVICE-CODE 1 Al.
BASE-NAME 2 A13.
EQUIP-CODE 15 Al.
NBR-EQUIP 16 14.

C-10

READY-PANT 20 13.
SERVICE-NAME * A12.
EQUIP-NAME * A6.
READY-SCALE * II.
EQUIP-TENS * 13.
RUN-TIME * A4.
NORMAL-TIME * A8.
PERCENT-LIT * A4.
SCALE-LIT * A26.
TENS-LIT * A35.

MIL-TIME-LIT * A27.
NORMAL-LIT * A21.
BIG-LIT * A60.

END.

Note that the first five fields in this example come from the data base, the
remaining fields are extended fields.

The extended fields (starting position "*") contain no data, as nothing has
been moved into them yet.

C.1.2.2.1 Alphanumeric Move. The alphanumeric move executable st tement has
the form:

< <conditional expression><receiving field> - "<literal>" IF {<fieldname>
SThis statement is used to specify movement of a literal to a field or to move

the contents of one field to another. For example:

SERVICE-NAME - SERVICE-CODE.

moves the contents of the data base record's field SERVICE-CODE ("A") followed
by 11 blanks into <extended field> SERVICE-NAME. Note, however, that the user
already had access to the data and could already reference that piece of data
through the field SERVICE-CODE. Moving it into SERVICE-NAME may not have
gained very much. The <move field> of a straight move can also be a literal.
Consider the following exa-aple:

SERVICE-NAME - "ARMY".

This statement moves the literal "ARMY" followed by 8 blanks (because the
field is defined as 12 characters) into <extended field> SERVICE-NAME. After
execution of this statement, there is data in the record which did not exist
previously. In this example, there could be records whose field SERVICE-CODE
contains an "F" for Air Force, an "M" for Marine, or miscellaneous letters for
other services and reserves. Using the above statement, <extended field>
SERVICE-NAME would be "ARMY" for every record. However, by combining the
alphanumeric move with conditional expressions the data may be altered to
satisfy the user requirements. Consider the following:

5C-11

SERVICE-NAME - "OTHER".
SERVICE-NAME - "ARMY" IF SERVICE-CODE EQ A.
SERVICE-NAME - "AIR FORCE" IF SEi.VICE-CODE EQ F.
SERVICE-NAME - "MARINE" IF SERVICE-CODE EQ M.

This set of statements moves the literal "OTHER" into <extended field>
SERVICE-NAME for every record. SERVICE-NAME is then "ARMY" only if the data
base record field SERVICE-CODE is equal to an "A", "AIR FORCE" only if the
record's field SERVICE-CODE is equal to an "F", and "Marine" only if
SERVICE-CODE is equal to an "M".

Partial fields (as discussed in section 3.2.1), may be used anywhere within
this statement. Partial field notation allows a user to reference only part
of a field. Briefly, a field name followed by a partial field notation span
references only those characters of the first included in that span. If the
user wants to reference only the first three characters of the field
"BASE-NAME" in a straight move, the following statement would do the job:

BIG-LIT - " ".

BIG-LIT - BASE-NAME (1/3).

Using our example data base record, <extended field> BIG-LIT would contain
"FOR" followed by 57 blanks. Taken a step further, consider the following set
of executable statements:

BIG-LIT (1/9) - "BASE CODE".
BIG-LIT (11/13) - BASE-NAME (1/3).
BIG-LIT (17/30) - "FULL BASE NAME".
BIG-LIT (32/46) - BASE-NAME.

The above set of statements would build a field in BIG-LIT that contained the
literal "BASE CODE FOR FULL BASE NAME FORT HUACHUCA".

C.1.2.2.2 Numeric Assignment. The syntax for this statement is:

I <conditional expression>
<receiving field> - [<numeric literal>] IF <numeric field>

The numeric assignment allows a numeric value to be assigned to a specified
field. A numeric move is indicated by the <move field> being a numeric
literal or constant. A numeric literal differs from an alphanumeric in that
there are no quotation marks surrounding a numeric literal. There is no
difference between a numeric literal and a numeric constant as used in this
discussion.

There are many uses for the numeric move. It can be used to initialize an
<extended field> that will be used in another executable statement that
resolves a mathematical equation or counts occurrences of data or accumulates

numerical data. It can be used to build a numeric scaling factor.

C-12

Referring to the example data base record and FDT, the following executable
statement will set <extended field> READY-SCALE to zero:

READY-SCALE - 0.

The execution of the move is controlled within a conditional expression. For
example, the <extended field> READY-SCALE may be set to a 0-9 scaling factor
based upon the percent of total equipment that is completely ready to use (the
record's field READY-PANT) by:

READY-SCALE - 9 IF READY-PANT BT 91/100.
READY-SCALE = 8 IF READY-PANT BT 81/90.
READY-SCALE - 7 IF READY-PANT BT 71/80.
READY-SCALE - 6 IF READY-PANT BT 61/70.
READY-SCALE - 5 IF READY-PANT BT 51/60.
READY-SCALE - 4 IF READY-PANT BT 41/50.
READY-SCALE - 3 IF READY-PANT BT 31/40.
READY-SCALE - 2 IF READY-PANT BT 21/30.
READY-SCALE - 1 IF READY-PANT BT 11/20.
READY-SCALE = 0 IF READY-PANT BT 0/10.

The above set of statements would set <extended field> READY-SCALE to 9 only
if the data base record's field READY-PANT were betwcen 91 and 100,
READY-SCALE would be set to 8 only if the record's field READY-PANT were
between 81 and 90, and so on. After execution of this set of statements, the
user has built a field that can be referenced and which contains a scaling

* factor.

Another variation of the numeric move is an executable statement called a
"numeric assignment". A numeric assignment is an English-like mathematic
expression that can only perform a single-level computation. The syntax of
the four different numeric assignments available is presented below:

ADD [VALUE] <value> TO <extended field>.

where <value> is the amount to be added to the <extended field>

SUBTRACT [VALUE] <value> FROM <extended field>.

where <value> is the amount to be subtracted from the <extended field>

MULTIPLY <extended field> BY <value>.

where <value> is the amount by which <extended field> is to be multiplied

DIVIDE <extended field> BY <value>.

where <value> is the amount by which <extended field> is to be divided

In all four numeric assignments, <value> can be either a numeric literal, a

1C-13

mathematic expression (surrounded by parentheses), or another field. The key
word "VALUE" is to be used when partial field notation could be confused with
division. For instance, at the beginning, GIPSY could not tell the difference
between these two statements:

ADD (1/3) - TOTAL-EQUIP.
ADD (1/3) TO TOTAL-EQUIP.

To keep from confusing GIPSY, the key word "VALUE" is used before the
mathematical expression to tell GIPSY that this is what you are doing. This
is only necessary in the ADD and SUBTRACT assignments when you have a field
named ADD or SUBTRACT.

The following examples show the various configurations of the numeric
assignment and describe the computation performed:

ADD 1 to COUNTER. This numeric assignment would increment the value in
the field COUNTER by one (COUNTER - COUNTER + 1).

SUBTRACT 10 FROM COUNTER. This numeric assignment would decrement the
value in the field COUNTER by 10 (COUNTER - COUNTER - 10).

MULTIPLY COUNTER BY (OFFSET / 2). This numeric assignment would multiply
the value in the field COUNTER by the result of the value in the field
OFFSET divided by two. The final result would then be placed in the
field COUNTER (COUNTER - (COUNTER * (OFFSET / 2))).

DIVIDE COUNTER BY OFFSET. This numeric assignment would divide the value
in the field COUNTER by the value in the field OFFSET with the final
result being placed in the field COUNTER (COUNTER-COUNTER/OFFSET).

C.1.2.2.3 Mathematical Assignment. The mathematical assignment statement is
in the form:

<receiving field> - (<arithmetic assignment>) [IF <conditional expression>].

This statement allows the receiving field to be set as a result of a
mathematical computation from data in the file or data added by some other
GIPSY function or prior field table statement. The arithmetic expression
follows the standard GIPSY definition but includes extended fields as valid
fields. Note that the arithmetic expressions must be completely enclosed in
parentheses. For a discussion of standard GIPSY arithmetic expressions refer
to section 3.2.9.

GIPSY uses the same mathematical resolution precedence algorithm that is
standard with most computers, including the Honeywell 6000 series:
parenthetical expression, multiplication and division followed by addition and
subtraction. In other words, the expression ((((Y * X) / Z + A) - 1) / 2)
would first get the result of Y * X, divide that by Z, add A to that result,
subtract 1, and then divide the result by 2. Note that GIPSY does not support

C-14

S exponentiation.

Using the example FDT to build an <extended field> with a count of the number
of pieces of equipment in tens. The statement would be:

EQUIP-TENS - (NBR-EQUIP / 10).

Considering the example data base record and FDT, with EQUIP-TENS defined as
an integer field, integer-type movement is performed. This means that the
result in the <extended field> EQUIP-TENS will be rounded down to the nearest
10. If the user wishes to have EQUIP-TENS forced up to the nearest 10, the
following executable statement would do the job:

EQUIP-TENS - ((NBR-EQUIP + 9) / 10).

GIPSY does not round in the conversion of EQUIP-TENS to the specified integer
format.

C.1.2.2.4 User Subroutine Move. The format of this executable statement is:

[<receiving field>] - $[(<arguments>)] <user subroutine>
[TF <conditional expression>].

The user subroutine move allows the data to be placed in the specified field
based upon execution of a user-written subroutine. A user subroutine is a
standard, Honeywell-executable subroutine. An executable subroutine is alwaysS in library element (loadable) format. Loadable format means that all external
references in a subroutine are resolved. Any user subroutine that is to be
used in an executable statement must reside on a LIBRARY File and must have an
entry on the ...ARG file. The LIBRARY file is a standard Honeywell Q* housing
one or more library elements. The ... ARG file is a file used by GIPSY that
defines the Q* elements and their arguments to GIPSY. GIPSY has a pre-defined
LIBRARY file and ...ARG file available to the user. The user does not have to
do anything special to access the GIPSY user subroutine LIBRARY File in order
to execute a GIPSY user subroutine.

All user subroutines used in an executable statement must be preceded by a
dollar sign ("$"). For our discussion here, the user subroutine "TIME" (which
is on the standard GIPSY LIBRARY File and, therefore, available to all users)
will be used. A very brief description of "TIME" follows so the reader can
fully understand the user subroutine move.

The user subroutine "TIME" simply accesses the system time kept
internally in the Honeywell mainframe and returns it to the user in
standard military time format (i.e., 1600 for 4:00 PM). The resultant
time is passed to the user in the <extended field> half of the executable
statement.

The statement:

C-15

RUN-TIME - $TIME.

would assign the current time to the field RUN-TIME. During execution of this
statement, GIPSY calls the user subroutine "TIME" and places the current
Honeywell system time into <extended field> RUN-TIME.

A few user subroutines do not return anything to the user. For instance, the
user subroutine "DISPLAY" which simply displays a message on the terminal
returns nothing back to the user. It does, however, have an input argument:
the message to be displayed. For those "non-returning" user subroutines,
there cannot be an <extended field> half of the executable statement. The
statement used to display the message "ALL IS WELL" on the terminal is

$DISPLAY ("ALL, IS WELL").

Wh,- this statement is executed, GIPSY calls the user subroutine DISPLAY which
displays the message "ALL IS WELL". Note that the user subroutine arguments
other than the <extended field> return argument are surrounded by parentheses.

User subroutines are extremely useful in many ways. They give the user
control and flexibility by providing the ability to "customize" GIPSY.

C.1.2.2.5 Field Routine. A field routine is a set of previously defined
field table executable statements that have been assigned a name by which they
can be activated. Any field routine used in an executable statement must be
defined before it can be referenced. Field routines are defined for a
specific type and the field routine type must be a type that is valid for the
field table executing it. Field routines can be defined as field table
subroutines.

All field routines used in an executable statement must be preceded by double
dollar signs ("$$"). Assume an imaginary user (who is utilizing the example
data base record and FDT) has defined a field routine named
"BUILD-NEW-TIME-FORMAT". Assume that this particular field routine takes a
military-format time and converts it to a regular time format. For example,
"1600" is converted to "4:00 PM". This field routine returns data (the newly
formatted time) to the user when it is executed; the statement using this
.ield routine must have an <extended field> half to house the new time.
Obviously, this routine must have access to the military-format time in order
to reformat it to a regular time. Assume that this field routine performs the
executable statement "RUN-TIME - $TIME." as one of its functions. The
following statement would return the newly formatted time to the <extended
field> NORMAL-TIME:

NORMAL-TIME - $$BUILD-NEW-TIME-FORMAT.

Taken a step further, the "BUILD-NEW-TIME-FORMAT" field routine does not have
to return data to the user. It could simply move the newly formatted time
field directly into the <extended field> NORMAL-TIME as part of its executable
statement. In this case, the executable statement that would perform this

C-16

entire function would be:

I$$BUILD-NEW-TIME-FORMAT.
C.1.2.2.6 Concatenated Move. This type of data manipulation allows multiple
data elements to be put together and then referenced as one data base record
<fields>, <extended fields>, and <literals> may be concatenated into a sinple
field by the concatenated move. This statement has the format:

<receiving fields> - <concatenation fields> [IF <conditional expression>].

The concatenation fields may be two or more fields and/or literals connected
by a concatenation operator.

The concatenation operator is the colon (:). That is, in order to concatenate
multiple data elements together, they must be connected by a colon (":").
This type of move provides a very flexible and powerful data manipulation
tool.

Referring once again to the example data base record and FDT, the data base
record's field READY-PANT contains the percent of the specified equipment that
is in "READY" status. In our example data hag rprord, 92% of EQUIP-CODE "T"
is "READY". In the previous sentence, the percent sign following "92" made it
obvious that percentages were being discussed. The user may also wish to use
a percent sign in his/her report. The following statement accomplishes this:

PERCENT-LIT - READY-PANT:"%".

After execution of this statement, <extended field> PERCENT-LIT contains the
data "92%" followed by a blank (remember PERCENT-LIT is defined as an A4
field). If the user wishes to build an <extended field> that would fully
explain what the number in the field READY-SCALE is, the following executable
statement could be used provided the <extended field> READY-SCALE had already
been built:

SCALE-LIT - "READINESS SCALE FACTOR - ":READY-SCALE.

After this statement is executed, the <extended field> SCALE-LIT contains the
string "READINESS SCALE FACTOR - 9".

If the user wants to build a data element that leaves no question about the
meaning of the contents of the data built in EQUIP-TENS, the following two
statements would be necessary in order to build that data element:

EQUIP-TENS - (NBR-EQUIP / 10).
TENS-LIT - "AMOUNT OF EQUIPMENT (IN TENS) - ":EQUIP-TENS.

Using the example data base record, the <extended field> TENS-LIT contains the
string "AMOUNT OF EQUIPMENT (IN TENS) - 51. Two statements were necessary
since only fields and literals are available for use in the <move field> half

C-17

of a statement.

To build clear text around RUN-TIME, the following executable statements could
be used:

RUN-TIME - $TIME.

MIL-TIME-LIT - "RETRIEVAL RUN AT":RUN-TIME:" HOURS".

The system time (returned in military time format from the user subroutine
"TIME") is returned from the user subroutine "TIME" into <extended field>
RUN-TIME in the first statement. The second statement then plugs RUN-TIME
into the middle of <extended field> MIL-TIME-LIT. After execution,
MIL-TIME-LIT would contain something like "RETRIEVAL RUN AT 1600 HOURS".

The user could build a field containing the regularly formatted time field in
a similar fashion:

$$BUILD-NEW-TIME-FORMAT.
NORMAL-LIT - "NORMAL TIME - ":NORMAL-TIME.

Remembering that the field routine "BUILD-NEW-TIME-FORMAT" places a converted
military-to-regular time in the <extended field> NORMAL-TIME, NORMAL-LIT would
contain the string "NORMAL-TIME - 4:00 PM" after execution.

C.1.2.2.7 Nested Field Tables. The field table may contain imbedded field
tables. There is no limit to the number of "nested" field tables a user can
have in a main structure. The basic syntax of an opening sentence as an
executable statement is as follows:

FIELD TABLE [WHEN <when clause>] [REPEAT <repeat clause>].

Everything mentioned about both the <when clause> and the <repeat clause> in
section C.1.2.1 applies here. The <when clause> is a conditional expression;
the <repeat clause> is any one of the four available repeats: WHILE, UNTIL,
FOR, VARYING. Notice that the <for clause> and the <name> are not available
when defining the nested structure; all nested field tables are assigned to
those belonging to the main structure.

The following scenario presents an example that introduces the use of this
executable statement. Assume that the record is:

ATFLGATNALVANYNHAKAZTXAROKVTHICANMNVIDILWYNEOHKY

The BUILD FDT to define the data base records is:

BUILD FDT.
ADD.

SERVICE-CODE 1 Al.
EQUIP-CODE 2 Al.
STATES 3 A1O0.

C-18

END.

Operationally, the fields are:

Field Name Meaning of Data

SERVICE-CODE Field length of one, starting in position one, containing
an alphanumeric code for service

EQUIP-CODE Field length of one, starting in position two, containing
an alphanumeric code for type of equipment

STATES Field length of 100, starting in position three, that may or may
not be completely filled, giving a list of two digit
alphanumeric state codes having responsibility for a least one
piece of the service's equipment.

The user wants to build a report that will show the full name of the service,
the full name of the equipment, and a count of states with that equipment.
Obviously, the user is going to need to perform some data manipulation and
his/her "BUILD FDT" structure defining his extending fields looks like this:

BUILD FDT
ADD.

SERVICE-NAME * A1O.
EQUIP-NAME * A6.
STATE-COUNT * 12.
STATE-HOLD * A2.
NBR-STATES 12.

END.

The user has built a user subroutine called "STATE-CODE-RETURN". This
subroutine returns to the next state code in the list held in the field
STATES. The argument passed this subroutine is the current pointer into
STATES.

The following field table will build understandable output fields from the
near-nonsense data record shown above (which was probably constructed for data
base storage efficiency).

FIELD TABLE.
SERVICE-NAME - "ARMY" IF SERVICE-CODE EQ A.
SERVICE-NAME - "AIR FORCE" IF SERVICE-CODE EQ F.
SERVICE-NAME - "MARINE" IF SERVICE-CODE EQ M.
SERVICE-NAME - "NAVY" IF SERVICE-CODE EQ N.

I
EQUIP-NAME - "PLANES" IF EQUIP-CODE EQ P.
EQUIP-NAME - "RIFLES" IF EQUIP-CODE EQ R.
EQUIP-NAME - "SHIPS" IF EQUIP-CODE EQ T.
EQUIP-NAME - "TANKS" IF EQUIP-CODE EQ T.

~C-19

FIELD TABLE REPEAT VARYING STATE-COUNT FROM 1 to 99 BY 2
OR UNTIL STATE-HOLD EQ "

STATE-HOLD - $STATES (STATE-COUNT).
END.
//
NBR-STATES - ((STATE-HOLD - 1) / 2).
ADD I TO NBR-STATES IF STATE-HOLD NE "

END.

The comments and indentation do not affect execution. They are added for
readability and comprehension.

Presented below is an English breakdown of the functional blocks presented in
the example above:

Build the extended field SERVICE-NAME so that it contains a meaningful
service name for every record in the data base.

Build the extended field EQUIP-NAME so that it contains a meaningful
equipment type name for every record in the data base.

Build the extended field STATE-HOLD by executing the subroutine named
"STATE-CODE-RETURN" repeating it until either the end of the STATES field
is reached or there are no more state codes in the field. Since there
are only 50 states, STATE-HOLD will be built a maximum of 50 times. The
extended field STATE-COUNT will start at "I" and be incremented by "2"
every time STATE-HOLD is built. When either the end of the STATES field
is reached or there are no more state codes left in the field,
STATE-COUNT will be equal to one character less that the total nu b'er of
valid state code characters. (If only one valid state code is found,
STATE-COUNT will be set to "1" even though each valid state code is two
characters long; if five valid state codes are found, STATE-COUNT will be
set to "9"; etc.)

Build the extende,1 field NBR-STATES so that it contains the number of
states that have responsibility for at least one piece of equipment
specified in EQUIP-CODE for the service specified in SERVICE-COUNT that
was computed in the previous functional block. Since STATE-COUNT is not
quite equal to the total number of valid state code characters found in
the STATES field, subtract "1" from it. And, since that result is still
two times greater than the actual number of states having this equipment
for this service, divide by "2". Add "1" to this result if there were 50
valid state codes on the record (this is indicated by STATE-HOLD NE
"BLANK").

Without the nested field table the following statements would have to be used
to replace the third functional block (the nested field table):

C-20

NBR-STATES - 0
STATE-END - FALSE.

STATE-HOLD - STATES (1/2).
STATE-END - TRUE IF STATE-HOLD NE " " AND NOT STATE-FND.

ADD 1 TO NBR-STATES IF STATE-FND.
STATE-HOLD - STATES (3/4) IF STATE-FND.
STATE-FND - TRUE IF STATE-HOLD NE " " AND NOT STATE-END.

AND 1 TO NBR-STATES IF STATE-FND.
STATE-HOLD - STATES (5/6) IF STATE-FND.
STATE-FND - TRUE IF STATE-HOLD NE " " AND NOT STATE-FND.

ADD 1 TO NBR-STATES IF STATE-FND.

The last three statements would be entered until the statement that builds
STATE-HOLD reached STATES (99/100). That is an extensive amount of typing, if
nothing else. Also, this functional block is exceedingly difficult to
understand. There are more disadvantages: this structure actually takes
longer to process and requires much more memory.

The ability to nest field tables is extremely helpful when a user must develop
very complicated retrievals from very complicated or hierarchical data bases.

With these tools, the user can manipulate data from any data base and build
retrievals that can be easily understood and maintained.

C.2 Field Table Types

There are four types of field tables within GIPSY. The types are determined
by the purpose which the field table serves and is identified by the <type
identifier> on the field table statement. In the general syntax definition:

FIELD TABLE [<type identifier>] [<execution control clauses>]

if no <type identifier> is specified, that field table will be used in the
data retrieval proct:7 and will be applied to every record in the file subject
to the <execution control clauses> and the imbedded conditional expression
specified. Type identifiers are:

QDF to build a field table which will be processed against all QDF
records which meet the criteria defined on the QUALIFY statement
(as discussed in sections 3.4.4 and 4.1.2).

QUALIFY to build a field table that will be processed against all
records in the QDF before the QUALIFY statement is executed.

GALL to build a field table which may be invoked for execution any
time a CALL statement is issued.

C-21

FILE Default, same as omitting <type identifier>

Since some fields are dynamically loaded, data may not be available when a
particular field table is executed, all fields are not available to all field
tables. The following table summarizes which source of data fields may be
used with each field table:

SOURCE OF DA'.A TYPE OF FIELD TABLE
FILE QDF QUALIFY CALL

Data base fields X
Data base fields extended X
Index fields X
Global definition X X X X
QDF X X
QDF extended X
Qualify extension to QDT X X

another source of data for the field table is in the field routine discussed
below.

The CALL type of field table cannot have a FOR CLAUSE in the FIELD TABLE
statement since the field table is executed cn demand.

The type of FIELD TABLE QDF can be assigned a name. Only one FIELD TABLE QDF
can be executed at any one time. However, the user is allowed to have more
than one FIELD TABLE QDF defined in a GIPSY application. The command:

CHANGE FIELD TABLE QDF [TO <name>].

is available to change the current FIELD TABLE QDF to the requested one. If
one has not been accessed, this command accesses the one specified. If a
FIELD TABLE QDF has no name, this one is automatically accessed until it is
changed. The "no-name" FIELD TABLE QDF can be reaccessed with the command
"CHANGE FIELD TABLE QDF."

The FIELD TABLE QUALIFY can also be assigned a name. Only one FIELD TABLE
QUALIFY can be executed at any one time. However, the user is allowed to have
more than one FIELD TABLE QUALIFY defined in a GIPSY application. The
command:

CHANGE FIELD TABLE QUALIFY [TO <name>].

is available throughout the GIPSY system for changing the current FIELD TABLE
QUALIFY to the requested one. If one hasn't been accessed, this command
accesses the one specified. If a FIELD TABLE QUALIFY has no name, the system
automatically accesses this one until it is changed. The "no-name" FIELD
TABLE QUALIFY can be reaccessed with the command "CHANGE FIELD TABLE QUALIFY."

C-22

C.3 The CALL in a Field Table

The CALL type of field table is executed by the user with the command:

CALL <name>.

This structure can be executed at any time a key word is expected during GIPSY
provided the structure has been defined. This structure is especially useful
for performing a task outside the realm of GIPSY by taking full advantage of
the user subroutine capability. Consider the following example:

BUILD FDT.
ADD.

SERVICE-CODE 1 Al.
EQUIP-CODE 2 A2.
REST-OF-DATA 3 A30.

ADD TO GLOBAL.
USER-SERVICE * Al.
USER-EQUIP * Al.

END.
/-
FIELD TABLE/CALL GET-USER-INFO.

$DISPLAY ("ENTER 1-CHARACTER CODE FOR REQUESTED SERVICE").
USER-SERVICE - $ACCEPT-USER-INPUT.
$DISPLAY ("ENTER 1-CHARACTER CODE FOR REQUESTED SERVICE").

END.

CALL GET-USER-INFO.

RETRIEVE IF SERVICE-CODE EQ USER-SERVICE AND EQUIP-CODE EQ USER-EQUIP.

In the above example, the statement "CALL GET-USER-INFO" executes the FIELD
TABLE CALL structure. During that execution, two messages are displayed on
the terminal ($DISPLAY) and two user inputs are accepted (fictional
$ACCEPT-USER-INPUT) and placed into GLOBAL fields. The RETRIEVE statement has
access to those fields since all statements that reference fields have access
to GLOBAL fields. In this example, only those records whose SERVICE-CODE and
EQUIP-CODE fields match the ones requested by the user will be retrieved.

C.4 The Field Routine

The field routine is ezsentially a field table which can be used as a user
call table subroutine. The body of the field routine as defined for a field
table is composed of the syntax for the field routine as:

FIELD ROUTINE NAMED <name> [RETURN <return argument>] [<argument clause>)]
[<execution control clauses>].
<field table executable statements>

END ROUTINE.

C-23

There are six types of field routines available to the user: FILE, QDF,
QUALIFY, CALL, GLOBAL, and OUTLUT. The FILE type is defaulted if no type is
included. GLOBAL field routines may be referenced within any field table
structure. The FILE, QDF, CALL and OUTPUT field routines may only be
referenced within the field table for which they are valid:

FIELD ROUTINE
TYPE AVAILABLE WITHIN

FILE FIELD TABLE
QDF FIELD TABLE QDF, OUTPUT TABLE
QUALIFY FIELD TABLE QUALIFY, FIELD TABLE QDF
CALL FIELD TABLE CALL
OUTPUT OUTPUT TABLE

The user can also define 'arguments" in the opening sentence for all field
routine types. These arguments are used to hold the data being passed to or
from the field routine. Argument definition is done in an <argument clause>.
There is no limit on the number of arguments which can be defined for a field
routine. Each argument must consist of the following:

<argument type> <argument name>

where <argument type> defines the direction (from or to) of the data for
use by the field routine and must be one of the
following key words:

RETURN Defines the area for accepting an <extended field>
type of returned data

INPUT Defines the area for holding data to be input to
the field routine

OUTPUT Defines the area for accepting data returned from
the field routine

INOUT Defines a data area that will be used as both an
input and output location

The <argument name> is the name of a pre-defined field that is of a valid
type for this field routine.

Below are some examples of field routine opening sentences and what they mean:

FIELD ROUTINE NAMED PROCESS-DATA-LIST RETURN DATA-AREA
(INPUT DATA-POINT INPUT DATA-STRING).

This field routine opening sentence has defined a field routine name
PROCESS-DATA-LIST that may be referenced only withi n a FIELD TABLE. The key
word "RETURN" denotes that a field called "DATA-AREA" will be used to hold

C-24

data returned from execution of this field routine. Two input arguments have
been defined: DATA-POINT and DATA-STRING. The fields DATA-AREA, DATA-POINT,
and DATA-STRING can be either FILE, EXTENDED, or GLOBAL fields.

FIELD ROUTINE QDF NAMED BUILD-NEW-DATE RETURN NEW-DATE
(INPUT OLD-DATE, OUTPUT SEASON).

This field routine statement has defined a field routine name BUILD-NEW-DATE
that may be referenced only within FIELD TABLE QDF or OUTPUT TABLE. The field
"NEW-DATE" has been defined to hold tha returned data after execution. An
input argument, OLD-DATE, has been defined that will accept data passed to the
field routine. A field named SEASON has been defined as the location to hold
a second output from execution of this field routine. The fields NEW-DArE,
OLD-DATE, and SEASON can be either QDF, QDF-extended, or GLOBAL fields.

FIELD ROUTINE QUALIFY NAMED BUILD-QUALIFIED-EQUIPMENT-FIELD.

This statement has defined a field routine that has no arguments and can be
referenced only within the FIELD TABLE QUALIFY or FIELD TABLE QDF.

FIELD ROUTINE CALL NAMED GET-USER-TIME-INPUT RETURN USER-TIME
(INOUT AM-PM).

This statement has defined a field routine that may be referenced only within
a FIELD TABLE CALL. The field USER-TIME has been denoted to hold the returned
data after execution. The field AM-PM serves as both an input and output
area. The fields USER-TIME and AM-PM can only be GLOBAL fields.

FIELD ROUTINE OUTPUT NAMED BUILD-OUTPUT-ELEMENT
(INPUT OUTPUT-ONE INPUT OUTPUT-TWO).

This field routine may only be referenced within a substructure of the Output
Table. The two input fields, OUTPUT-ONE and OUTPUT-TWO may be QDF, QDF
extended, QUALIFY, or GLOBAL fields.

FIELD ROUTINE GLOBAL NAMED GET-CURRENT-TIME
RETURN - CURRENT-TIME.

This field routine opening sentence has defined a field routine named
GET-CURRENT-TIME and may be referenced within any field table. The field
CURRENT-TIME will contain the returned data after execution. This field can
only be a GLOBAL field.

The fields referenced within a field routine must be defined in the "BUILD
FDT" structure before they can be used. The field types (QDF, FILE, etc.)
must be compatible with the field routine type.

Before one field routine can be referenced in another, it must have been
previously defined. The internal field routine type must match the type of

the routine referencing it. The only exception to this rule is the FIELD

C
C-25

ROUTINE GLOBAL which may be referenced by any field table.

All other types of data manipulation outlined in section C.1.2.2 are available
within the field routine with no other exceptions or constraints.

The primary function of the field routine capability is to allow users to
break their field tables into easily understood and developed functional
blocks. It serves a secondary function in that GIPSY applications become more
documentable and easier to maintain.

Below is an example of the definition and use of several field routines:

BUILD FDT.
ADD.

SERVICE-CODE 1 Al.
EQUIP-CODE 2 A2.
NBR-EQUIP 3 15.
READY-PCNT 8 13.
SVC-TOTAL-EQ * 124.
ARMY-TOTAL SVC-TOTAL-EQ(l) * 16.
AIR-TOTAL SVC-TOTAL-EQ(7) * 16.
MARINE-TOTAL SVC-TOTAL-EQ(13) * 16.
NAVY-TOTAL SVC-TOTAL-EQ(19) * 16.

SERVICE-PCNT * 116.
ARMY-PCNT SERVICE-PCNT(l) * 14.
AIR-PCNT SERVICE-PCNT(5) * 14.
MARINE-PCNT SERVICE-PCNT(9) * 14.
NAVY-PCNT SERVICE-PCNT(13) * 14.

SERVICE-AVG * 112.
ARMY-AVG SERVICE-AVG(1) * 13.
AIR-AVG SERVICE-PCNT(4) * 13.
MARINE-AVG SERVICE-AVG(7) * 13.
NAVY-AVG SERVICE-AVG(10) * 13.

SERVICE-RECS * 112.
ARMY-NR-RECS SERVICE-RECS(1) * 13.
AIR-RECS SERVICE-RECS(4) * 13.
MARINE-RECS SERVICE-RECS(7) * 13.
NAVY-RE"S SERVICE-RECS(lO) * 13.

SVC-TOT-EQ * 16.
SVC-EQ-PCNT * 14.
TEMP-PERCENT * 14.
SVC-EQ-RECS * 13.
NBR-SVC-RECS * 14.

END.
/
FIELD ROUTINE NAMED COMPUTE-AVERAGE-PERCENT (RETURN - SVC-EQ-AVG,

INPUT - NBR-SVC-RECS, INOUT - SVC-EQ-PCNT).
ADD READY-PCNT TO SVC-EQ-PCNT.
TEMP-PERCENT - SVC-EQ-PCNT.
DIVIDE TEMP-PERCENT BY NBR-SVC-RECS.

C-26

SVC-EQ-AVG - TEMP-PERCENT.
END ROUTINE.
//
FIELD ROUTINE NAMED TOTAL-EQUIPMENT-AND PERCENT (INOUT - SVC-TOT-EQ,

INOUT - SVC-EQ-PCNT, INOUT - SVC-EQ-AVG, INOUT - NBR-SVC-RECS).
ADD NBR-EQUIP TO SVC-TOT-EQ.
ADD 1 TO NBR-SVC-RECS.
SVC-EQ-AVG - $$COMPUTE-AVERAGE-PERCENT (NBR-SVC-RECS, SVC-EQ-PCNT).

END ROUTINE.
//
FIELD TABLE FOR INITIAL.

SVC-TOTAL-EQ - 0.
SERVICE-PCNT - 0.
SERVICE-AVG - 0.
SERVICE-RECS - 0.

END.
//
FIELD TABLE.

$$TOTAL-EQUIPMENT-AND-PERCENT (ARMY-TOTAL, ARMY-PCNT, ARMY-AVG,
ARMY-NR-RECS) IF SERVICE-CODE EQ A.

$$TOTAL-EQUIPMENT-AND-PERCENT (AIR-TOTAL, AIR-PCNT, AIR-AVG,
AIR-NP-RECS) IF SERVICE-CODE EQ F.

$$TOTAL-EQUIPMENT-AND-PERCENT (MARINE-TOTAL, MARINE-PCNT, MARINE-AVG,
MARINE-NR-RECS) IF SERVICE-CODE EQ M.

$$TOTAL-EQUIPMENT-AND-PERCENT (NAVY-TOTAL, NAVY-PCNT, NAVY-AVG,
NAVY-NR-RECS) IF SERVICE-CODE EQ N.

* END.

In this example, the field table executes a field routine. Notice the order
in which the routines were defined. A field routine must have already been
defined before it can be referenced within another field table.

The following PCS (figure C-1) demonstrates the usage of several GIPSY
subroutines used in the GDRMOD module. The command "DISPLAY BOOK PLACE *."
produced the first output (figure C-2). A subsequent command "LOCATION"
displayed the first page of the "part" named LOCATION (figure C-3).

C-27

uwA
W

l'-W 0 C4

l'- uj C.d-0

64 W W

CL z W
C: w -

u0 u x c

W C2

*x a S1
SW so I W

NO- L.3 0 b-
N & x4-
N)- Z 0

-- 0 w U0
0 NI W W6.

S vs J * j
= w C a

WU- a .9 4 ''

-J CL 0- UIo-

on in 0.- £:2w - MW
6L 0Ai a a. WI W t 2 0%%Z W1 N

)- -NWPvt. Vw % 0 16 1ZK 0-
U. J)- XE 50 Z CZ 0 (I.

50 6 1- ' 6z z W Z10 0
I 1 0 U al aN 0 % W 0

a. a." WW Uw UWL.4 I W"
% AW W- ON N ZwwwU0 0.a6- .~
3 0 aNN owJ %P ca CVI -J~ wC t-. zr

"VO o&- a .J. II-SL z OW49 340-U W6.
J ZI-.4 40 6C Sze I-s IL zJ- I-I S

I-- a~l aW a 6 - NI aI 11-2 h.W WL C
NOc zWO I~ .J 2 OW 2:~ a0- owU

W 6400 U VI- . WW -0 W 49W1
0 U.~0. N- w~ 2 -6 Wi.L VIJ0l).JU9 Jj 0

WJ *00aU aSL J- aI 05 Wm J5* cu0 JmLw W o

0 I A54W -CL a L3% W\S9 W\aI-I C

am$- NI' I I I. I S N WM 1- -4 1.A. - - w' w co~s-N Vr't *
NSSSSS 0----- Nwc W N N j OW NW NC- of N NM WlMMMMM
MW U-- WU- c W- b - -a-z--- --j -- x

e cacca = w = a _j -2481 UQ

Iw
U LUJ 1.)

a-i V) .-. 4
I-W W 1

1-@ rw 0
0o a i . i L

IO Z U) ..j
U w WI

S U Z inah

x j.~ z w

ZNW ina 0 z z-U
O-0 Z 0

@" O U. of 0 K

I -I.- W0 I-
9 N$- a I.-w w *
Us U) .5 u .j I- Li
0 U W0L hi O

.JU £Jut .J i
-0 a

@0,- 9 0-I wv -

WIi we 1 w
WNo *, U

I- w %0 0-

Uno a wet U
czw U a m6aw a6a 0
.j1 0 .J%ZN 0-y ..

Nw LINO L
Pd N .,W- Tru% I .0z 0

I-WOLN - IWEGWW sKw 0 6
oczo -z a 6J.JU am 1 06
62-N 6 o-zzB6 .a Zw i
IL IN S of I in1 A -

hwso U £WWII.WD WW
W.JIJ 0 0.JU-Z J.. 0

we&--Ut' We6..J-- 949- -

I- WW U 0Wl- WS 06
ow uwqj cowu w WOW) 1-0

S.JZ 626 l.J6 hi W..16W z
OWW- aOoO bi- '10 .iwaZO 0

Z 0-..J 4A.11hZ 3p. -J) wz we".0fefz J
$a ak IL IC M. WO 96 .jwOO

W W%w W%-. IwSm

w - Nd pi9 w~ p v N w qh - NM m it vs ro to. aD th - Ny m v~ in
VV V VW VV V v oPPo innIno%%ADtv.

C-29

W- 4 .

W-4 W-w-

liii z

C-30 n 1 :

EpE'NNE

U)U

00

u 0-0.31 th2

C-31

THIS PAGE INTENTIONALLY LEFT BLANK

C-32

APPENDIX D

BUILD NEW REPORT EXAMPLE

AJA

THIS PAGE INTENTIONALLY LEFT BLANK

D-2

Eu E

0.

Cc
0 - -- 13
E>

o CcWu-
Ci -Cu ccO
< -C

*0Q1

< wq ..0 " 0
E Or E1 (

0

sC Eu

'.07.
- 0--

1.0 0 N

~ 0 0

U1 0

oo bLb

E CV V
ts c -'',,v W

o 0a cse mw 0

IV E~ W

.- 3

cu N
u

Ul)
U

0

Uli N 1J4N >CJ~

P.-.

- ~ N "N C 4)

ECNNN
LJ u.~-

N N cu
u 47

-4-4-4 -4- fu

.;v ea

0D-

V 0 -.

a.. 4.'a.

u~ C'-.-

C 0 co

L4 0 m)
4-j

-Y-

00

u-o . E c.

E -Um >0i.

00 00
-C 0 c

V

(0 4.0 m >

~CL L. 00 (A V

0 E it :2 o0

4' 00 U1U 0

4.. E ~ 'c

1J 0.J A 0
~Z 0

C 1 0 -J -- 4-:
a. CL0 U L.i _-5 -

a-~ L.U * j%~

toV

c U-

* v

00
4)4

4)

0 4 1 - -4

0 E u)

0)4-
4-i

IV tu C

C I-
4- i 0.

0) 4)

.cLZJ C

C0
4-4:'t

-1 0 1 -

4)~

*Z 0
-D-

U, -

4;

0-.

4).
(U

E- r'=
m 4)

0 C >
4. V, -

m 0

4) -f c

N OL.

I.- (f) L)

- 0U

U-~~c "DuL.. , -

0.0 _0j
j U L.

M M
40 IV

00

V. 0.-

D-7~

00

v) 0

(U u

~C
(U

4) 2.0

0C 4) w.o

C ~c'C 0 ~

00

L. E

4))

* ~- 0

c- c

(U L. E
2 0 J2-0
0 - -

D-8

41

- C
V>, .0 x

.-) .-c

4)4

> >

cu 4)
00

0 0 v

~ 4) ~. .a4
00-0

(i, 4-

o 0L -L 0

E) 194)L

4u4 0 4)

OOL 4) .. aE 4
0-- r"U

O'-'U 0 0 ~ C)U

0 u. -L. ~

4- uj 73. N..

I- XJ 0

T) - Z m:.

11-4 4) L

l)0 Q In

D-9

0

E 0

00

CLC

- c 3

rni

0 L0
1tv

00W

00

- 0

to, U
CL 0 C

4u LL

-Z 0
0 -

D-1

00

Eu

c cy 3a

La U.

-) . I-

RJn

L. 0 JL.

0- 0

o~ 'E
Z a

4~0 D-11

-0-

&4.,

C-
0 oC

-0 4

-. X -

4) p.- 4)

E

8 N
0~ - z IQ

0 =
C. - --4 N..m-

IM f

U-

0 0.

-~~~ E-IC4u
00 0

u E-

D-1

z 00

u 0
-4J

-4

to~ oc

ul Eu
u w

Loo

z 7
U2
00

Z- LaiW

0 6)LA
* .0

D-13 z

w 0
S4)

4

4- 0- 0

0
0 0 4)

00
.a 4- 4-

E

CJ C-

uL 0

0 z c)

1.0 4a

0 LU c

4-

0. U

0.

0-4
U, ,

ig &I w 0 4-

0 CE0. L0

40 0 0 0d
.. U C aS.4

0 no 4.u

0 *0

4) >4)t

-C Z 4- -

>0j 0j'~

1:1 >~ 0 0
-0 0

4)> 00"

0 0; -0

0 0 v0
4)0

04)0

U 0. D-04

-4 zd -

:z.'A.

LL)
'A0 -

v 0

0. 6 -6.

40 0
OC: cr

0 00

40- EE.

QfP- 4l -4 4\ 0

- 4..woV - l u C -1 I- C -1 In 0.
ti -Uz 014)

-~~ ~ -r"Iz'jXm XI

4)00 ~ ~ C~ > ;; ;J w- . I- m
Z >)

D-15

0.0 u W I
0

0 1 0 5 Z5 5 5, z

C) -Y> J -. Lj Li u'

0-a - 0 Cd"i J

0 0 Q 0 Q:

4 LA- Lb. L. U. L

N '.J L.J L

V)C 0 > > > > >

C~ D

4)4 ~ U. P- N~

0 . -... -
u --

r4 Cj flu r~
u 0~

0.40 - V XCJQ Z5,

< E L

-4~ U
.c(tu E. 0

u. . UL

D-16

7- -Z

N4 N

.:~~~ C%4J RJJ~
~ -E

-n - *f9

>-~ N N~1n~

17 V 7 V1

--- 4 N

ev

fU

Li D-17

THIS PAGE INTENTIONALLY LEFT BLANK

D-18

APPENDIX E

AREA NAMES

E-1

THIS PAGE INTENTIONALLY LEFT BLANK

E- 2

0. 0I tI I off 11111 11111
I- C) 00 0 00 00 00 00000

z
0

WWW3:: Whihhw w32:13 wwbJww :3 w
WWvr-W oWoWW WWVQV o-W4r- - (A o

- -. ')f) M'I4vm'. OUWWMW V.40vo -40

I M M V.O~o t'.W.4 Onven) M"IWmv- 114 c
0 v-v WW') 4l Fwv. OTIMMM Mr0"ON -4 I'W

0000.-4 00000 .400"0 -40000 Go

hi w~fww4w wwtl-m~o *1101-M .4WM'0(% so
VM. M Y('F) 14W *0weffl we.4('W 4.4

ft. r-I')-4 Of0 *f * oa -Wo t-
W~f'-Uw4 WW -WYww *f--4- SA~WW

WW333 WWzWW 3nn33 WW3WW MW
OWSOW .4-U(AW *0I')IA '41')4w fl-U)
wwnrnu q'WMWO4 MMMVM' MM)-4UIW o0
M -*OMOM W-I)I-V ammaf- Wfr-owO OWoLLa VWWIUU .wv*MWI' SWWM *WWWW@ *I'

hi w4g-011-05.4-4" 01.4MvvY MMMOW0 (UW
J v.a "Wee-s r-0@ ~0 f- W4 a -i0-Wo 100

0000.4 00000 W400-40 W40000 00
a ZZVAZZ zMZZqg ozozz Mxz= zz
Q MWWW o wmaeo *ur-00 *WOWW _aS
3 *WWMO1 Ww".We *wsr4@ Mm'4n' MW
0 YP)WW. Ef-f-MeIw *SWS@ WMI'' 00

z u

3 #A IA W
Xa E ""& 0£0- C"c am

WIs-5A ccW00 £e-.hNC I-- t-a a0 50
C0£cc 00000I oox WUZZ
9L L& sJ. e .. Ji .az zzaaw mmccc chi

a££cc ££m oft

E-

w j

33 M 03: m~wow awa 333

v- t- m~ " UQwjOQ emUU ouo

r'-r- coMw-rW vwq'-4r' M-u0-M- C.-m o

000 00000 00-0.4 0 .4"q0 0 Os"co
a xzz nnnzz mzrzz ozrrz zwzz
hi Ooq iP-Wwww wsIf-(w *.4qm- r-".Wm

M ww'wo V V PW4 N --qWO 0-4 M -0 0 0W W IV- L
ow vor-owwWw mmvmv o mWF) rf~f- w
w-'Mcu 0..00Q. O..0vfl & V9.-4 r- &a0.4

33W MWW33 w3WWW WZWW3 2333
w i- w OMw--W -W w rl- ,4 V M W 4 o a

:3I-M'W UJw".U) -4moom0 WWWCOO WObWW
o ILwvW M'U3'-0*4 .- 40ws Mm4-" 0 ~u 0

Z: hi~ OWO P % W w-wo WWWW WI')UD
000 00000 00-00 0-00-~ Owe0
zz ZZZ IUI(Z wzzzz iAzzzz ZWnz

3 m sE) wvMW vmw4wv W(')00U V--O
0 ao i m3~ W'r, crcm r -flIW(w r-- .e p ca Wf- rin

.- zw.'q WWWeAW iUWO0.e fhJWMp(M WWlUM

Oe'WO WWoPor 0.409- *MS.OY 00.40

a w
lz #--

w Ma0

3 x ew
0 a Qa Q
Q w IA on w zuna

S.." 0 Z ZZI

cc z in 9 zcz ocac
C CZ-. 0 ZI "- "I'.40 N WW

NMC Mz'. ... We xtsoffo "-0 a
"wo- .- to "N I- S-6-ZCa 2' C cl-W'

WWZ 00www &MM mcacc cage
mom oMWOM mourn.k 00000 0000

E-4

0

a I I I I I
I~ #-) 00J 0 4L)O

Wj W 3W3I3 LjlW 3 3W 3 3w LJW3 JZW =3 LA(A u Afl() q W oIr' 'oal 0 WuOrMr' r- o u w
V- M Ln MW un9DCI L - -4OW - -@4 - CU - V 4D U0 I 0 ~ -4 -4 P- M r--r-f (U Mr- LAMIt -4 CU 0 V V

0 (V 4 Qt lL 0 .-1 MV LflP M MW M(LnU LflO -* tPIW
"~ r- v (DIT f C Lf OD- (DOM CUW q9 CUW (1w) U WP (
dr C CU W M W 4 w.r'wte0 fr- M C- 0 f- -4r-vI

oG) W WQ4 CDG)Q "~O 4% wW . 0 0 0 & 9 DISz ztnzzz mzzzz zzzzz zzzzz
ma -Owr-a wowaw -m-wm OMPqru

MMUm 0 mfW0 uece w4-q T 0 CIMVWV
r-4 Mc ()-()l.4e .-. mwmmf' -P1Uwqw o~f 9-w

. wfu - .q -4V 4 vv ~-W4 u)to(V V4 M Wri -

i w3ma33_ ww3zW 3mawm w3k3w
V-No r-rM'-MWO Vutw w- W f- W M-4 r- C

I 4mW4.4w w@0qWW wUwwv 0-0-ML
=3 I- L -WmbwP mr-mmm '1flJ wOAW~ Wl- vC%-ifw
0 WL MU (UWP1O w &V V 'Am-We 4QOO
Z: Va q-4 - r- & w W- it- me u MM 4 1,- ,-wmr- V

-4 0 0000- 000-40 00000 w0000
wzZCAzUz Enwzzz zrzxz zzzzz

hI -0 W~dw0 I M q r- W4 fwr-w *1,-fu wr-11P_
I,, w w v Wi ntwru- WI')LUP1L 'oqwP

SI

3 w

o 4njz'.

(a

9 ~ wI C.) w 0 -r :
0: £E maouo wo M£X K

I.- a.izoo oozmw O1-awo 0 crU
ma ZxxOO 00000 OM>N £WhI *)o 00000 00000 OUOOOO QQ

E-

1)t 0 L) V)(* lie* IF- a ~~-CU M 0 (L - 0
-~ Q~ WW &aI L zJ W Ls. Li L LL. LL.LLI. W 30

tL Ir Ii I II I tIi I It sin III I I
Q- L. 00 Q Q0 Q 000 C.) 0

0

33W3LL: 2W WUJ W :3 Mf 3 Ld3 WWM3W W 3
e0 &4*-4 -0 v cu m 6 -h ch O g- ri f- M q4 40 I

I- O.-4QUW V W-0 -0 un M i4 -0 -6U M M fut1~ Wqq I
I IlMbIJW -MU-MMO MMWV)fW4, ~wwwO .. r'

-WWWW f- W4 - V r-Ww-4 ow-wr qt
W wW 4 P- M 0 Wf -wW I oWor-mw r'- 0 Wm W04-
0e000 0-4OQQ OW,.400 4900-4O so

M zzzzz zwzzz (AZUzz nrAvZU xz

w -sW"-r-c I%-Meow tv-q-wW r- Wtu m % eM

33w3w 3WWW3 33WWM W333W W3

o mvwont *QWUmI' oowv)wPM (')I')t WU
MM' tOS" r-oE'w4w MO.4SO W MWW 4 VQm

.. oe 0q4*.. 0O400 O*Ov-30 00
W zZZUZ Z(Azzz Az(AzZ (ZZUZ OAz

3 vot'Wm mmvioo ruewew mlWt')Q MmS
o 4W . M W.400m' wmwvttI- vdmw # WE'm

.J oo O.')*q*WN WWWWOq 4V4Ow40 we
UMf',-@)- (1OSMV tU'40OW OkWMt' ME'M

-.- wn 0 40-$see WWqSWW VVOM-4 * V4

4A
MI

a

0 IL

0 M V)Z4# 0

a Im 0z a# a a W IF
0 z 09 a- x Z (ACW

a a of C""c x OLaI-
0OZ hi Ix- M.JQ I.- -

"-f-CC W""0 VO4 I 00.3-

IcE M) > JMXMz .J&)ZO cWWW M E

aawww WWWWW WLa.LLWh..hWIL&LL 00

E6

*)
U n0 1 I -4: :>Cu ~

0 0 3 0 3X x x

1- 00 0000)000 0000 0U00

3WW WWW~n nbJ2n M3n MWW3

l" V-0 rU.wwwof oMr-mvqw &meo- SOw-
0 WVO -WU-- wU-.()I' OMMT)- *t'~~

Omw'4. vt~-flJ.4 OV~Q.4 W W4 VGoU 7)It U
000 0-000 0-4000 000-- 0-490

Szzz zzzzz zzzrz zzzzm zz
lWGml- .4IAowq. vUPwmw OIAWWO 00 a
0.m~ WOW-. aowqmow 0m-*'U'i'-wq
am www 0000w'u ~- -41DWV wwww

M GeV 0 4 V M 4 -.-..-.- (OWS*4W .. 'fmt

MWW WWaa ZW~33 M33 MWW3
OvV I%-M".Wv '-q4s0w 0OMq-. soon
Vw mqmw w''EW MCW.. om.4mw W-MV

:3 1- r- M - WWt-W.-4 I% F'- M (OVOWS w4MM-o> 9a. MOMAU -. q('ws vm..0w oww-ww M*O
Q W IDWoo MM)ObWW .r#OJww 6D'4qW0M I
z ea =so a*r- W4r- W wwOa.4.. OwP-WM 0".440

0ee 0Y4000 0.'000 000-4W4 O0@0

Wi maw waiwwv ma'ir-ow Oil%-nio i'-nw

3 e- IM M0 WO'l S M M4
a W00 m v t V O sv a au

IL

d0

z 0o
NQ

a =0 Zj W x
Z WO4 W W W i

z 0 -1 do 0 '40

cc).. 0 a 1&E 0 C >

X4Z aW.-aQ ..i MCC cc -a um
ace CWUZC W WWW Z""'W D CC

0MM C.IWWW aCCC.6.- .J> .2 zxxzZ
WWW X"w M3333 MnCCW 003D
000 co0ca 00000 OaZZZ IZZZ

E-7

w

0

a. 0: 1 1i .1a u 1' 1 111 111a
- Qi 00000 00000 4u(J()OOOQ

z
0

-3 33WW3 W3-WW3 WWMM33 WW23aa
w aowr'ew Mno~we Mnowthu r--.rwo

In M' *'Wow WOMMO') Mas').U r- (- a -I
a-. W4 ,.f- r-U) -4 0 Mw I n cc w w r- Us (A V- -4

ir W4 vW M - CO q~wqO% P') -O9-Q a V ChCO
o V4QO1 6)0T44400490 00000 .40000

Ir z zzzzz zEzzE zzzrz zzrz
w M~ P- f-ao M c I tr- a wcO-MM F- 0 M 0

&0 MM & F W')0. w~omUwes M li-OLA M%0.w4t
wL a)000w FMowtt WWhr')40 a) CU0 OD

w vv WfWT Oqw1f')WI P)qr4 -t- IV M v M 4

3 33WIw3 w3WW3 wwaa33 ww3aw
M' Mowelr- =moms mvwr-w MMNVV

o WOW(' WOLAWO wOA3w~r I')W"W4
oLL M' .4nowe0 w(')0v -I')')W M'WOM
£ W Vi r-vWm Iw4Utfl qwqinO M(0O) ()WM

-S -40SOD S000a 00000 V4 0 400
az zzzmz wzzzr zzzzz zzzzw
wr- wwwoo uOMMS r'r-amw Mow0.inV-4r

3 V W44 1V0 W4 *w.vw4* 040MV4 *WW (O)

Yt'1P34' '4MWWW MWwwv4r wW(0

4w0W1- 00 0 l i O W

w M

0 a
Efl 0 w>

0 .-. w a In C
a Ox c zz cA Z 1 Q ZO

w clioaca caaw &COEr &Wxzr
0 A vi z zz ZOMMM 1- =0c C IW

0.4 0"~4PS P 44P" in eNe4

E8

Mi >

L) 000 0000 00000. OQU.0 00Q

wwwww wwwiw w3ww.3 wlwwW3 :33
MMMOG t-WO QQO~IO -oQr-.4U MO)
&"M*WW q-.I')WW -WMt)Lf WWE'UM(-4 m

iWQOMM ~r- r-w - M & . Mr- vwmv-w ww
(3('WW-Y (U('flO M'OM'-W W-OMW) OW

Maom OQQWU3 O-Mf OMWOM wowo wo~

OwV- -0 "04a 0ie~ asses *OV oo0 0 4

MMMt-4.v- WW(')tOw MM')OMMl UWO 0fli I'fm
0. WW W 4 4m UaU-((UEOOOfl mt041'th .4)lM

wwwoo mvwwm~ r-'3our- mwwwv aml

WWWWWa WIW3W W3bJW3 WWaWM 33
wuu-.ew wrr'M W .4 CU) -4 woar- w vt'M

:-wOmwwm tUWOMM WMMrWW omr-0P3 Mv4
okA rn4t'on -. ewo moves W-0-'- MM~

0 W~ mWWWW owr-4 OhWUW'3" wMwM.. am
WM- V ww OMM-'o omovtr- noe-w r-r-
*q..400 W40000 00000 0 5000 00

w MZZI ZzU3zz zzzwz wzzzz zz
MMMMM'~)O #(')m VW W-'(UflWW in M

o P30W3 M(')OV I')qWW(') rOU3V P- w4

Z IL) j
0 Z

C .4 A Zr z I AOA
Z - Xi 0-4 .- - 1a-

3 WC MC-3 Z"a ac1-1 >i

.JZM9 E w" E0 WOnca accce cc
hi .- 3 - -. j I V V 4t E ZE E

E-9

00

1.- 00 0)0 00. 00 00 000

PIww o~wer-O 4LwWWW wQQww (UIWf'
mm- V-OMM -w4MWUM .'LflmhW -(VIM%~~

X -4 a)O CA r W t(go1,wwwwoO W'.-4-4 ').-oflut
0 LUq& ft d -4 (T).&' 0 IT) CUWQ U V G a-.q V4-

v #r-w wwwI'-O~ aour-mq- *Q~ww r'- w vw
iO MfI' Wwf-W W00*.4 *qcoc OW-W

&O &0 q 00 ~4 W4 & &V4Q & oO.4
w ztnr zrzz zzzzz zuonzz zzzz

SIn U4 OWOQOM P~- WUW t ,-F WU M'-4 fl- -4ww
I. fu)f- W mmomm *.4 MV * V4 JLD Uq(Y V-4 M v ru 45I
&. wr-Q omoIwwt 01!6_00 vmt)row 0 MOW c

S-uvq V-WO- OMM)-0* UWfJOM me')lJ
r-owu wr-ewo~ WeImnha We'e ('3WOi

MW3 =131413 aMIA111 3WWmw W333
"we~ Q(m1omm' .40voo r'.o~w4W m'wVW
tw VMOMV qoqvoq wom"M 'tO.4I

W :3 N r- r-r W4OW OW r- r- U wwwOV, '4OS

w ~ oou 1064r-r' 4wr-rW4 mwowqo f'og
3 so wwv~ uomorn ~WeIW WOww

-3Vi .4 1-WO OWW,4* flW-'WM VOWS
Vasvq-qwm OWqqwq w-weaw owv'

z ~
3 M.
0 z

z a

3 c Z MAj 0. Wt a

Z:)I zw.-t- -". a 0 cc
C-Iz 0 off 8.4 0.4 w
-w 0 a WAu uOD..iZ un u0 &M

""f4- 0.-ftJew "4OOC OED.~ wuaJuW

mno xuooz uwuzzz WINIMMIL 6-I-DD
ccW W""4"-. ""~000 ocww LWWWW
ZEE ErrE Xrrru rErzz zzzz

E-10

hi 0
(5V In 0 t2 iW N 0'-'s<i 4t'-O 0 a0MS

IL 1111 I II I IIIII
- 0 C.)0000 Q U~L 000 00

0

hi 3Wa333 W3WW3 3W33W awa3W

M R .'4Of-q. tUW').4. WOU-4.4 U JIhV W
W MMML('OM' -OP-MV& moQwn&) *ooww

fl- Gomm" WMMOO *@OMO 0OOQO
W r- P-fZZ r-ZU 0Z Z fl - I-ZWPM ZWA
.4 4D,-t0040 -UIU0-W 0004'-C 0000W

at 0 ('('4AZ - I')q.WW *0W0Uz 0tz)')
W. I WW.-.OM- r'-Mitwfl 00-40- *WOOMM 0 -4t'wW MvPGWW **E')*I *0WMMM

o wwinm Mov'e'mC w)w~ev WWe-'4

Ml V~() Wq ~ " W. WI-fVW LOt- IV M c

hi :3aa W3WWM3 333W WW33W
W -WWM M()OMW (OWO) *WMMV
~ AWvv ('vQow W0WW SOfllMlMl

C> -k MMMOV'I~ LMvevo WOh0 - 0 ITqW i

hiI' WWOMM Of-*We wt%-VVV *VVM)4

j. 0 P- 0 f- a '- wooer'- WOWSw MzOWuIW
WO* OW.0'40 W4000q4 "Wevq" "We-&

Ix u0 zwzzz OZZZOn zzzzz ZZZZZ

0 * qevow- W.WWi- rOvww ew..O
.o M * - W W V s*v W C

XQi z CO

a~ ~ C)W e 7

ZWW I.- Ih I-- -- f- C

C CWWWO W... 0000 CO 0

z xxzrz zzzzz zzzzz ZZOOO

E- 11

U L)
en I %e~r~ qz W o. QJ ". OD 0 C'
(I ,- (L EO E a. r 0w c o .a- M C
I.. fy f I I1 I II I I I I I i

31AJW3 aZW33 WZ33W Wa3w:3 W3

IF- 1flWCM W*4WVV O('W AJM W-.4' -4It
X MM O W-4 M v V M -4 W fu W fl,- r-Wumr- .- r

0 M O (I'30W WW)LO em"MOr6 W(M)YFI WO

W .4V-)U r- (Dlf~~ W v vWWW WWW W " W w-
we40D 4 0 W W 4 - 0s4O 4 0" Q00490 V9

Ir z7z0UAzAZ t ZIhZW UZzfh zzxzz 4A

"10 P E.0 (W) uWWco c 0011w L0W0G V-4fj4 WO * o
M. UW"PCV WWWWI') MM'O-V4 W.400W .4

D 4 am w4 W4 -40mme'~ WqWO O IWMM-4140 WO 4
Wfr-M-m4O WQ0W-W WWWWO .4WCWt~ OW

3W3W3 33W33 W333W Wa3w W3
wq4~wv 0qwfq4"W WWWWO (0('fWW (WM

0 U1I b-.-4 wfW WW O.4UOu4 (').~0 we
W3 e-I'Wofl(M".-440 ommv'm W4OWU W

j M WWWW WWW"MM(' W40W4M *OWPJ M f-
-: 40040 00 " V4 *.400'WW4 0000.4 0w
a zzzWW mrom~ rwzzM zz WX

W 4abv')4- CfW6W1- fr-WoWW *f-Ummo MM

WvW4WW W-AMOW o~w4mw *u4WM

(1- 0r- MW WM OM OO -4r-f-V W

Cz 0

3 W 00 zo x
0 Zz 0.Z 3c i- a

a 4 cc.3"W X
z -i Ci a#. - ca

'-4 0O fA (U) 00 C -
3Z W.4 WW OU

Z W > = "4Ex ".JWW WMW -j (A
cX .1 0i &am ~ 0.mmI W z

ze-C z > M"".- QW000 "'00 0
0UoEca A "4cc ZZMMM 0I-O-mx 0,4W
0.4Cnc ZM.J00 a'> - - I.- rwwcw Za

MCCCC wwZx"" 00000 WOC hIX
00.00.0 0.0.0- &.0..0.0 0.0.00 am

E- 12 *

w 0

C. m I I I~ I I II I I
- C) 0C Q) C) 0) 0 00

4L)

whih Whihiaih 3Lah3W WWW3 wa3w

a- (U*(' QWfi-W W'(wWI') wm.4 OMMOi
mmmYf' -0&om- -q wmw0 wq M Ow m *mr-mo

000 00000 00000 -"coo0 0000
aAZ mz ZZ ZUxZZZ ZWZW z w ZZZZ

ad W-4o mwwo.m a r- a- Mmma.- &WOW
0. f (IaUot')0--4 MWV)OW VwvWM' *Wuqw

fl, M MVW0 MfJv. -- .0, WM OO w wm - - m

V41r VOOVM' -fo.4P 00--4w omvo1

u-uwa qr'www 3r- wwwm 0W-0*()0
Vmiw vvwwm wwwwo mmw~aw Sowe

3I- MaeOk m'r-Wr%-v MW,.00 UWWWwf- OWN"l~q
o WL "em1 OOJWOM' M').Oq4 flWOWV *Moo

Q h WOW wwwwv 1 mm 4aPI P)-40--* 0t'w

000 Oc00e 00000 -- 000 0OW40

W w WOW ww u- vVwomzq wwwir- 0IiO~ww
3 VMSi W0Jw44'o .4vw- UOMOVO *00-
o Was W W4.~- "- w C-W 0v - 04m'wtl-m 0".00
.j W9Uw w00Wm4 -4VE'ww W4UIA M V C *0('

meUI woom..4 -*MOM)0 *4('wm OW

U %n w
z aC

im Z "0 .

.4 0C a n 0 "~ aJ Cool-.

C WWCC .j .J w a WE 6-£aa£
"C£ WEE- .. l,. m. OZac£ CaW
W"lb COOZ9 £W>C I.0O"
hiza -I-.m. 0ZJ CE.JXZ 1hZX
in Cz 00 wu'-w 0 0C *-I - 1- S-I.- I--
0ma z0Om Z-OWZ Z-Jvmm mm
10m CC£££ WW.-'-- "0000 0000
amL W10WUmU 1010011 10010100 101101

E-13

0 1 c: oc4 MIX W (-)Zwa0 CAMUN3N

IL w I I I I I I I1 1 I I I II
I-- Q~ 00) 00 Q. 000'..) ooc0u
z

Wi mWWWW 3WMW3 33m3w 3WWWW
a- (U wm GW'U(' (tY(UY4 *w('1-0 -waWwv

W s OOOWe '-0 'f- mmo - r- Nmr- v m
&MAM vmmw 0())'O W' moom mmoom

.- vm *-ww OVWw-M mww-w MI'UtVwO

~00000 -0000 00000 00000
Sz zzwzwu zzzzz zmnzzz zuz

w T of-WNW~o ouWON Vgu'.~v OrUSMI
&0 l at (U In MI oo4UE' V4"-40W MMIA&V~
&. 00)40). OP-wow~ (4U)4 1) Qf5wq

SIMA vvowvw qwm some wo e
0O 001)W m..'MIN-0PN NI1-rt't' wQU)0If
M w w *qg4 V4 WV4 W4 w..64wwo 0W(UW4

W WWWWW WMIMW3 3333W 3WWW
&*wo OOWOU) (U0)gq(' COGh(' 'WG.
GM MW "M)') ~ rIAUwi (Y)Y)UW(.el()U)U

:3 I-0 0('W('W ILWN-4 MNr~MWI' V r- o -4 c-
C) &a. 0 mm 0WW M)()Omw U)4CU4U) OW0W

SW W0 0rMu)('4 mo)0)Ki0k WWW4" COS0.41
_j Mu MVqWq- W40--q wowww W--

we qrfo cease 000 00000 0a0e0

a:zwzz zzzzz ZU)ZZZ zzUzz

3 omwE M)vm .wa.w MOM-40

m 0.4mw4m mmme')0. .44 0 *r-owm

a U)
C, 0

r z W

z w c ai 0
3 0 ") .) .Zr

0WZ& c rlcE
a OW&L. w h W.JQ

" c &.IW OX .IL &"C c
m3W "-Wm-- "-a £00 I-z

lz U x U) Z)I.- 0 -Cwm 0£

WWI I.- U)cm w.jWZ CC.JZW
X XXXIX wz"-.JI ZW.-i"4 z ot-WN
P-I.-I-01- 1-- -aX "" u I ~ ".jN QI--
M mm Dcc"- WCC

O 00000 ommmf0. - 1-- -- m)M33

E140

0

'.3 I >3N-CO I 0_)Z 0 000 CV W=>>

a. ir I1 1 I Ii I si Is I seeIII I

WWW33 bJWW33 Z3wwww WWW3W3 W
MoGwer'- -4vvob U)I'WVE' t')O mOIO 0

I- fl.4m1o M'-VrMq vftJvWU W'(wwm 0
Z 14rob6 W-'W'WY or-00-4 Ir-wwwmm 0

M w'U4 a -4 M M r- -6 V- M O -40t -wqwfw O -.

SWOO tcu-4.o-w4 0u0000t woowoss r-
wt ZZU)zr zU)zmm zzzzr zrzzzu) z

w Me C _4,P4o r-we vmw mwwmmoU 0
0. .if-f'Q' MW('44 OVOU) WUWWt'I0 0

M-V Mu~w -40ur) IUoWOC ammmosW0 0
f-M)OMW so-Go= wwr-Wv weO-4W0 -
mm)omm m 0 V4 0 -4 .wgmmv0 (UwwT-4m' M

www~a ww3M3 :3wwww W33 333 hi
mWoWW wmvf'-w ommom wwPmom' a
'V@w wwv-V *WI')I' U)I)(OWW 0

=3 I- M)WV4w4 ci"W -4W W MOy v4 M M 0WWC 4W Wo Ia. Movw4v nj(w4vm U)wo(') *WWMr)W M
Q~ Wi w)om w f-(UQ.4m 4W -0a W -rr-W f COU 0
Z J MMMtUOS C~- t- WWOww woor-Ow M

0:-0.4 0-0 . 4 0 -4 4 00000 see-so .
wt Zzwz zmzmoU zzzzm zzzzzm z

3 W rNo4ow qWWO- vowomq. am-.eq *

mg444qU) U)4W~W4 *W01ft4 womov 0
I'UU,4Pm 0W40-M ~w(')('s Wm-40(0

0
h&i

.j0
taa

K0 9 W

z a 0 cc

4n 0 wiI

= =9 ftolW_ f
:3u cu a zzatu- I-

hi .. U) X0 4§.
aw Q U) a clewoo I-

04 gn xJf m-~ -4.4(lW C =ih >- 0

#-.3NZC -. OWO ZU"U4Z I- F. - I.- 0 1-

>CCWW ZX4000 ftftM ZZZ0.ft U)

E-15

1 MbW GKO. n1, f U) kD IAJOC0
i6- V rs uo Ul LO 3 3 ww >Q

I 0 0000 P P 0 0 0 0 0W - 000 I

wom3 3w33ww w2w33% V33hi3 WDhihi

0 .W-0 W-POO&W *4-4000 W a 4P4 4 Goes

a: toWMw wrv-ow- M-MtWW f-WN 0 Tl vw f
0.V4W n 40 C 0-40V0, LD U S-40 CU0,4. - 000 gLA- V4S

a. IWM-~ W CU V -. 0 " 0 U 00 f-OWUol M It M
D1 I')0U- W.-4cYOW wo'.'w . n-4 inW- C'0

0 "W4 M WMW~MM amOwet- 4')W60U P W W
VMV-4 vwflj.- f .-ovwU)W4WOq wW V .4v0

3W33 mWmmW W3waa 33a3 WWW
mmWwWW(-w wwI('6 M'OW.W (Do

:3 1-- I'M')(IO C-WVOW MM(M(WW (WW(') r- W
o) LL WMO1. MWMVMr MWMS'~ vwmwo F)WO

Q- P hiww lOlit') P'WW') W W(aU..O W V W4
4 40.94 0 0.400. "4000 W44 0 00 e

a zzZ zzzzz ZZZZZ oJZZmz ZZIA
Mi MMMVf .- wWWWv WWW(' MWUU -)rWWom

oJ W-mc VMVMw ')W.4q owwwow VWM
Vow* woWI-wo OWinire vwmo Won'
mIme v a l.4 M v v .q () c .4'.4 q1 qw ml

3 4 a m I

a~ ~ cZ a: c

4AI COEOM (A

hi ~ m w~ X&O-. W W4Z Z(0 cc
zc Z£Z -ZcO, a:CZ Z .-1

N cz.4'. w W300-. rY)W
&ZW E-0CJW w xg-I.- I- g.-0.jx wow'

mmm3 D=D 33233 >323

E- 16

LA
-4 w

0

z
0

1- fu m
M A.

a. 0 M)

w w
MCI-

3 - W')

oh. 0. U

Sjw
Mi03

3E 1

THIS PAGE INTENTIONALLY LEFT BLANK

E-18

APPENDIX F

LOCATION NAMES

*F-1

THIS PACE INTENTIONALLY LEFT~ BLANK

F- 2

00000 00000 00000 00000 00000
00000 00000 00000 OOOo 000
uwr-awm' uO.wg- MOD- wwour- r- n O

x v o CVUU fl0 fl'Mw WU)W- n C~ W~LA 0 1- 0ti j'W~
o wpm ('W.Or ~ r-~wo w.'~ -d ... o0 40v- v wew(

fl 00e~o fl- W -r- -r- - - r- ww o~ wwwwcA
W" * q wo dD Q.4 W4 &4 E0- 0 -4 ** 0 000&

C.)0000 000 000000000 00000
o oooo*o~o ~00000 wooooo

..J M l-.'Lfl CUo)(-WW W-4&f'ww -4 rC 494O) UW OWIV 0 n V CU CUIV I MNWl~fO(U WflJ-0U 0w00e

w

C EJ

wmlC -ZO c o l-o Z -

> .z . jwm W O O z-

I--

cu

*ow Q Q ~ Q ~ ~ * *
(3. * O Q, ~ * Q @ * Q

c~~,

o3Lflh"Moo M M -WC'Mfl m'~U Cf 0 le m -44CU
omovoCU oru-ow Lfltm-mfl womom E'OV

o m o wo t ~ iMf I% P! -mI j12C -OM M rm . 00 q 0wm 0 Ac
M4 0 0 0 w 404(D 0 - 4: D 04 W8V D oz~z z ~ zt z = z z = zwo m 0 0 zo o 0 0 0 w o
00000 0 40 0 w o w 0 0

4:

C

oh 00
da 0-0~ -1

Wr W m& cz c a.0 =0
CKI- 0 a -j c WaC=Z~09~ ezuw 1I- ax C zoowcooI- O..WCZ a z 0 OJWo WZxj~i 0 a A (

Lwwwz a..J.Jm C WOOO QZCC

F-4

3333333M3 3a333 33333 333o**00000 00000 00000 000&0
o ooom 00000 000900 mmmmm 4 mI
ww w uwwcuru w ronmw wou~r-wn fl- I

o wwuc-w .4w W.O o*-riw mm'uwv r- m
M a O0.iO W4q- 0 00- cr-a CA w 0000 r- r- 0w COt4 a

= zZzz ==zzz zzzzz zzzzz ===
sa0 000 00000 00000o 00000 w00a 0 00000& 00000 00000 000.J womwe wmwiuoam ww~omr-o wfo(-ow a e-

, 0 *LA -s CU Lb 4 -4 0*v.Wo* IV U u woM -L (9W.
* om(wwo mww(9u Lfl(9ONl VOOlWV 0"m

I- 4 I-wwmi a w mc . 'a w -O jw
00 j4 A vC w jcnwo C -J = w" =C O w W ca

I--

W

(33

we 00000 00000D 00000 00000 60
so 00000 00000 00000 00000 00MW Ow V q-4 Cr- r- 0 - V- CA C u rl-o 0 v

Z WO C'ImfJY.4 O9CU LAw- - l C e4() v Cmomin on'
Po V4I *(OLflU - 0 r-M ,. CUer. r-r-- r-o wetC weW
0- 04d eD am.. 0 ... * f.t'w M.~.- to @

Szz =zzzz ===== =xzz= zzzzz z
0@0 00000 00000 00000 00000 00
oes 00000 00000 00000 00000 sof-we 0 MW V r'- 0 W C*- Wo -CQOW* (B w',-Lr (

qW u rnu u L cu rcu~ m 'u~ v~'wew M TI n v(4m v fu

z

x w
Id 6. E 6 oxm W

o 9 W .cWxZZ=WxWW
aJ ZC W c 00 O C J

I--

LAD

0

C-

owe 33333 33333 333se 33333 3
000 00000 00000 00000 00000 0

W- W4 e -400 9" 49 0 - 0 0 0 W0 00-'4-0 0

M. 000 41 00M00 0 0 0 0900 0900WW W 0 M
o000 00000 00000 00000 000000

N' r- 0 WWWWfl mm. - m00 w(')WohC P-0Ll m (m

U-

o (A

0a

0- IX =- ICI--j u 0 0 0A

#. e3 C : di 4 M 04 C L0 tJ

0~ZI- 0 ZO (.0 0 I-WV l I-I.1

* F-7

@0
= IT.

I-eQ
C

-F-8

APPENDIX G
WIS WORKSTATION (WWS) GIPSY TERMINAL OPERATIONS

O G-1

THIS PAGE INTENTIONALLY LEFT~ BLANK

G-2

APPENDIX L. WIS WORKSTATION (WWS) GIPSY TERMINAL OPERATIONS (VIPTEK)

. L.1 Introduction.

The WIS Workstation (WWS) IBM PC 3270 color terminal can be used with GIPSY as
an eight color graphics terminal. To make use of the color graphics
capabilities, the terminal must meet the following requirements:

o Be connected to the H6000 as a VIP 7705 and successfully executing BIS
7705 or ETC software.

o Be configured with a copy of the VIPTEK software on the master
catalogue as VIPTEK.EXE.

o Have GIPSYmate system software installed on the WWS.

If these requirements are met, the user can successfully use the PC 3270 as a

graphics terminal with GIPSY.

L.1.1 BIS7705. After selection from the initial start up menu, a VIP 7705
emulator program is loaded into memory. This emulator is the BIS7705. The

BIS7705 program automatically loads GIPSYmate into memory as a child process.
From this point the user may activate GIPSYmate either by logging onto the
host and entering GI-PSY through the BIS7705 emulator, or by simply pressing
both SHIFT keys simultaneously to enter the GIPSYmate mode without logging
onto the host.

. L.1.2 ETC. After selection from the initial start up menu, a secondary menu
will appear. From this menu the user may select "H6000 with Graphics", "H6000
without Graphics", or "ETC configuration". The user should select "H6000 with

Graphics". After this selection a VIP 7705 emulator program will be loaded

into memory. This emulator is ETC. This ETC program will load GIPSYmate into
memory as a child process. From this point the user may activate GIPSYmate
either by logging onto the host and entering GIPSY through the ETC emulator,
or by simply pressing both SHIFT keys simultaneously to enter the GIPSYmate
mode without logging on to the host.

L.2 Operations.

The following steps should be followed to use GIPSY with the WWS color

terminal:

1) Turn on your WWS and follow the instructions above for the
appropriate emulator package you have installed on your system.

2) Enter "GIPSY" at the system level prompt to initiate GIPSY
execution. If the terminal is defined to GIPSY, the
initialization procedures in GIPSY will configure GIPSY to the

specifications of WWS (Colors, screen height and width, etc.). If
their terminal is not defined to GIPSY, the user will be prompted

*G-3

to input a code defining the terminal type. Figure L-1 shows the
GIPSY prompt when the terminal has not been previously defined in
the system definition file, (..SYSDEF). After GIPSY starts up and
determines the terminal type, it will automatically cause the VIP
7705 emulator to turn control over to VIPTEK--the child processor.

3) Exiting GIPSY by entering the DONE command will switch control
from the TEKEM back to the VIP 7705 emulator.

G-4

- F- v~I

cc

41 4

1-4 9-4

'-4

L I - N-

M ND

44

40 0 N N N

N*

THIS PAGE INTENTIONALLY LEFT BLANK

G-6

APPENDIX H
INDEX

$BODY-LINE................................6-21
$BODY-PART................................6-21
$DATE 3-48

$ISPPTR 3-48
$LINES-LEFTr................................6-22
$PAGE-NUMBER...............................6-22
$PRINT-TIME 6-23
SPRINT-DATE 6-22
$TIME 3-48
$TOTAL-PAGES...............................6-23
ACCESS 3-141

ACCUMULATE................................3-122
ADD....................................3-154
Adding text................................3-133
AFT 3-29
APPEND..............................3-120, 3-122
Arithmetic operators........................3-45, 3-143
Arithmetic expressions..........................3-45
ASSIGN..................................3-143
AUTO 3-126
AXIS...................................3-126
Bar graph..............................2-12, 3-81
Batch job...................................3-54

Binary Integer............................3-33.1
Binary Floating Point..........................3-33.1
Body table.................................6-4
BOOK, direct...............................6-37
BOOK, display 6-24
BOOK file................................6-23
BOOK review commands...........................6-30
BREAK command 3-67
Browsing..................................4-1
BUILD FDT................................3-36
BUILD output...............................6-23
Calculate data...........................3-61, 3-65
Catalog-file descriptors.........................3-6
Category and Section definition.....................3-66
Category.................................3-79
//CATEGORY................................3-23
CHANGE..................................3-149
CHANGOES....................................3-38
Character size...............................3-9
Circles, adding.............................3-193
//CIRCLES..................................3-23
Classification caveats..........................6-38
Classification code 3 . 3-10
Classification markings.........................3-9
CLEAR....................................3-27
//CLEAR PAGE...............................3-23
Color processing.............................3-27

H-2 CH -1

COLOR 3-86
//COLS..................................3-23
Column definition..............................3-59
Comments.................................3-26
COMPLETE.................................3-38
Composite Expression 3-43.1, 3-47
Concatenation...............................3-48
Conditional assignments..........................3-47
Conditional expressions..........................3-37
Conditional expressions, predefined...................3-41
//CONTINUE................................3-23
Comparison operators............................2-7
Coordinates 3-48
//COPY..................................3-23
CUELIB...................................3-7
Current file...............................3-12
Curve graph 3-99
DAF 1-6, 3-7
DAFC, save................................3-21
DAFC, recall..............................3-20
Data file................................3-29
Data manipulation.............................6-1
Data modification.......................3-46, 4-49, 4-4
Data retrieval............................3-43, 4-1
Data selection..............................3-45
Data types.............................3-4, 3-32
Data, user input.............................3-28
DATSEL...................................3-9
DEFAULT..................................3-123
DEFINE....................................3-153
Define charater 3-179
Define fieldname............................3-32.1
Define process..............................3-49
DEFINE TERMINAL..............................3-16
DELETE....................................3-146
DELETE field definitions..........................3-35
Density.................................3-85
DIF, save................................3-22
DIFFERENCE................................3-122
DIRECT BOOK 6-37
DISPLA...................................3-9
DISPLAY..............................3-158, 3-190
DISPLAY BAR..............................3-81, 3-86
Display Book, interactive.........................6-24
Display Book, Non-interactive......................6-25
Display control..............................3-171
DISPLAY CURVE 3-99
DISPLAY GANTT..............................3-107
Display, geographic 3-157
DISPLAY LINE GRAPH..........................3-97, 3-99

H-3 CH -1

DISPLAY MiAP 3-159
Display map on slide............................5-1
DISPLAY PIE..............................3-111
DISPLAY POINT . 3 9
DISPLAY REPORT..............................3-69
DISPLAY SYMBOL..............................3-132
DISTANCE................................3-194
DO PROCESS..................................3-49
DONE statement..............................3-27, 3-55
Download data................................5-1
//ECHO.................................3-23, 3-53
EJECT statement..............................6-20
Error correction 3-1, 3-5, 3-12
EXECUTE. .. 2
EXPLICIT............................3-60, 3-64, 3-77
EXTRACT....................................3-198
FDT.................................1-6, 2-6, 3-32
FDT, save................................3-18
//FDT.................................3-24, 4-6
Field assignment...............................4-5
Field definition, add 6-2
Field definition, delete..........................3-35
Field definition, insert..........................3-35
Field, extened................................3-4
Field manipulation............................6-1
FIELD TABLE. 3-47, 3-49, 4-3, 4-5
FILE..3-8
File Structure Table (FST)..................1-6, 3-30, 3-30.1
File types...................................2-6
FILL..................................3-86, 3-124
FINAL 6-10
FIXDEC...............................3-71, 3-123
FLOAT labels...............................3-113
FOR INITIAL 3-47
Gantt chart................................3-107
GCFILE...................................3-8
GDR 3-9, 6-1
GDS............................1-6, 2-9, 3-8, 3-69
GDS, access...............................3-19
GDS, save................................3-19
//GT 3-24
GENERATE.............................3-132, 3-190
Geographic display............................3-157
GEOMOD.....................................3-9
GET IDSII STRUCTURE 3-30
GFRC file.................................3-29
GIPSY batch...............................3-54
GIPSYD 3-7
GIPSYG...............................3-7, 3-188
GIPSY initialization............................3-6

H-4 CH -1

GIPSY language.............................2-9,3-li
GIPSY modes............................2-9, 3-200
GIPSY outputs..............................2-12
GIPSY prompt......... 2-9, 3-1
GIPSY release number.............................3-1
GIPSYR................................3-7, 6-1
GIPSY statements................... 3-1, 3-11
GIPSY, terminating 3-27
GLOBAL....................................3-37
Graphics off.................................3-135
G-REAT CIRCLE...............................3-185
GRID...........................2-23, 3-126, 3-127, 3-173
GROUP definition...............................6-23
Header table................................6-4
Histogram 2-12, 3-91
//HUH 3-24
I-D-S/I 1-7, 3-29

//IDSII STRUCTURE 3-24
//IDT....................................3-24
INCLUDE 3-22, 3-44
Index file, describing FDT.........................3-36
Index file................................1-7, 3-29
INITIAL 6-10
INPUT...................................3-154
INPUT statement...............................3-156
INSERT field definitions.........................3-35
INSIDE....................................3-113
Integrated file..............................1-7
Interrupt statements...........................3-23
ISP file..................................3-29
JDAC.......................................3-28
Labels.................................3-113
//LAST....................................3-24
LIBRARY statement............................3-28
LIMIT.........................3 -118, 3-145, 3-146, 3-197
LIMIT SYMBOLS............................3-132, 3-197
//LIMIT...............................3-24, 3-120
Limiting decimal places..........................3-123
Line color.....................................3-99
Line graph.............................2-12, 3-91
Line numbers..................................3-12
LINE options..................................3-98
LINE statement.............................6-10, 6-11
Line types............................3-106, 3-166
LIST, data..................................3-198
//LIST.....................................3-24
//LOCATION.................................3-25
LOCATION..................................3-194
LOCATION TABLE..............................3-171
LOCK..................................3-125, 3-130

H-5 CHI-1

Logic table.............................1-7, 3-42

//LOGIC. 3-250
MAGIC/GIPSY interface 5-1
Map details...............................3-164
Map, display on slide 5-1
Map file 3-160
MAP definition.............................3-158
Math table...........................1-7, 3-46, 3-48
//MATH..................................3-25
Matrix generation............................3-56
Matrix modification. 3116
MAXDEC...............................3-71, 3-123
Mode....................................1-7
Module...................................3-8
MTXGN 3-9
NAMED...................................3-193
NO-MSG...................................3-8
//NOTE 3-25
Output table................................6-4
Output table routines..........................6-21
Packed Decimal..............................3-33
PAGING 3-91, 3-103
Partial field notation 1-7, 3-4, 3-34, 4-6
Parts definition..............................6-4
//PAUSE 3-25
PCS 1-8, 3-8, 3-11
PCS, save.................................3-19
Picture processing............................3-2000
Picture recall..............................3-201
Picture save 3-200
//PICTURE 3-25, 3-202
Pie chart............................2-12, 3-111
Plot picture...............................3-201
Point graph. 2-12, 3-91
Point options 3-98
POST-DATSEL.................................3-9
POST-DISPA 3-9
POST-GEOMOD.................................3-9
POST-MTXGEN.................................3-9
POST-SYNTAX.................................3-9
PRE-DATSEL.................................3-9
PRE-DISPLA.................................3-9
PRE-GEOMOD.................................3-9
PRE-MOD...................................3-9
PRE-MTXGEN.................................3-9
PRE-SYNTAX.................................3-9
//PREVIEW 3-25
Print 4-1, 4-2
Print to disk file............................4-3
//PROCESS 3-25

H-6 CH- 1 0

PROJECTION.............................3-159, 3-168
Prompt...................................1-8
Prompt character.............................3-14
Prompt, user input.............................3-56
Proportion specifications 3-125
//PURGE 3-25
QDF. 1-8, 2-7, 3-8, 4-1, 4-3, 4-9, 4-10, 6-2
QDF manipulation..............................6-3
QDT, save................................3-19
QDT.....................................1-8
//QDT 3-25

//QLT 3-25
QUALIFY 3-37, 3-199, 4-1, 6-3
Random Access...............................1-8
Range process..............................3-63
RANGE 3-60, 3-73
RECNBR...................................3-43.1
Record output table 4-9
Record type.......................3-32, 3.43.1, 3.47.1
Refresh..................................3-135
Relational operators............................3-38
Relative..................................1-8

Relative Expression........................3-43.1, 3-47.1
RENAME..................................3-147
//REPORT.................................3-25
Report Building................................6-4
REPORT, build new 3-141
Report, build tabular...........................3-59
Report definition 6-4
Report, display.............................3-67, 3-69
Reports, modifying.........................2-12, 3-116
Reports, multiple..............................3-66
Report, review 3-143

REPORT, save.................................3-141
Reports, statistical...........................3-56
Report, tabular...........................2-12, 3-69
Report totals...............................3-120
Reports, types..............................3-69
RESORT.....................................6-3
RETAIN picture..............................3-200
RETRIEVE 3-43.1, 3-47, 3-67, 3-199, 4-1, 4-6
RETRIEVE from index..............................3-44
RETURN...............................3-12, 3-14
//RETURN..............................3-14, 3-25
REVIEW..................................3-157
//ROUTINES................................3-26
Row and Column definition........................3-59
//ROWS..................................3-26
RUN command...........................3-44, 3-188
SAVE, DAFC...................................3-20

H-7 CH -1

SAVE, data fields. 2-22
SAVE, DIF 3-22
SAVE, GDS 3-19
SAVE, FDT 3-18
SAVE, PGs 3-19
SAVE, QDF 3-19
Section Definition 3-66, 3-79
//SECTIONS................................3-26
Security..................................1-9
SELECT.............................3-59, 3-62, 3-75

Sequential Access.............................1-8
SET CLEAR................................3-14
SET COLOR................................3-27
SET COPY.................................3-14
SET DATE.................................3-14
SET DTG...................................3-14
SET ECHO.................................3-14
SET FONT.................................3-15
SET GRAPHICS.................................3-14
SET LINE COLOR..............................3-99
SET MAP.............................3-159, 3-171
SET MESSAGES...............................3-14
SET MONITOR...............................3-45
SET OUTPUT 4-4
SET PROTECT...................................171
SET RECORDING................................3-14
SET SIZE.................................3-15
SET VISIBLE...............................3-171
SET WAIT.................................3-14
SHADE................................3-85, 3-124
SHOW.................................3-103, 3-106
SIZE options.................................3-98
SORT..............................3-36, 4-4, 6-2
SPACE statement..................................6-19
STACKING.*........................3 -82, 3-86, 3-91, 3-98
Statement composition........ 3-3
Step Graph............................3-103, 3-107
Subroutines 3-28
SUBSET..................................3-148
Subsetting.................................4-3
Symbol plot...............................3-174
SYM4BOL TABLE.................................3-175
Symbols..................................3-132
Symbols, adding.........................3-132, 3-193
Symbols, limit..........................3-132, 3-197
Symbols, user defined 3-179
//SYMBOLS..................................3-26
SYNTAX...................................3-9
Syntax error correction 3-5
Temporary PCS................ 3-12

H-8 CH -1

Terminal type...............................3-17
Terminal types supported. 2-3
Terminating GIPSY.............................3-27
Text, adding...................................3-198
TEXT TABLE..................................3-133
//TEXT......................................3-26
Tic marks............................3-126, 3-127
Title..................................3-9, 3-86
Title, modifying................................3-11
TOPBOT....................................3-10
Track options..................................3-184
TRACK TABLE................................3-184
Tracks, adding..................................3-190
//TRACKS.....................................3-26
Trailer table 6-10
TRANSFER................................3-188, 3-200
//TRMDEP.................................3-17
TSS logn...................................3-1
TSS command...................................3-55
TSS commands.................................3-26
Type Expression..........................3-43.1, 3.47.1
UFAS......................................1-8
UFAS file..................................3-29
UNLOCK....................................3-125
USE 3-59, 3-72
USE process...................................3-60
User input................................3-56
User programs................................3-27
USING....................................3-98, 3-101
VALUE.....................................3-81
Vector mode 3-85
WEDGE...................................3-113
WINDOW..................................3-159, 3-166
//WINDOW.....................................3-26
WINDOW TABLE...............................3-168
WIS/CUC 5-1
WITHIN coordinate 3-38
WORLD2 3-160

X-TITLE 3-97
X-axis..................................3-126
Y-TITLE 3-97
Y-axis......................................3-126
Z-248......................................5-1
ZOOM.......................................3-195

H-9 CH -1

THIS PAGE INTENTIONALLY LEFT BLANK

H-1O

DISTRIBUTION

Addressees Copies

DSSO Codes

JPAM-P (Record and Reference Set). 3
JNSL 2
JNCR..................................3
JNCE..................................6
JNON..................................3
JND 6
JNGG 25
JWS 4
JWO 2
JCO 2
JCRO..................................1

ADP Support Group, COG/Systems Software
SHAPE APO New York 09055 12

AFCENT/SSC, ATTN: DSO SEC MARTIN, USAE Box F
APO AE 09703-5000. 1

Alaskan Air Command, ATTN: SCOS
Elrnendorf AFB, AK 99506-5001 1

ANMC COD
Ft. Ritchie, MD 21719-5010......................1

ATC-ACDSD, Data Automation, ATTN: Systems Division
Randolph AFB, TX 78148........................1

Air Force Combat Operations Center, AFCOS/XOOO, Room BD967,
The Pentagon, Washington, DC 20301-7010. 2

7CG DOWHW, Room 1D1031, The Pentagon, Attn: Chuck Elmore
The Pentagon, Washington, DC 20301 7

I-i CH-1

Addressees Copies

Air Force Data Services Center, IRS, Room 1C536,
The Pentagon, Washington, DC 20301 1

Air Force Data Systems Design Center
Gunter AFB, AL 36114.........................5

CCSA, ATTN: MOCS-C, Room MF74lC,
The Pentagon, Washington, DC 20301 2

CCSA-E, ATTN: ASQE-CC-SS
APO New York, NY 09403-0136

CINCUSAREUR, Heidelberg (AEAGC-DPCE)
APO New York 09403..........................1

Commander, MSC Atlantic, Military Ocean Terminal, Bldg 42
Attn: L-6, WIN Site, Bayonne, NJ 07002-5399 1

USCINCLANT, Code J633C
ATTN: Technical Library, Norfolk, VA 23511. 5

Commanding Officer, IANTCOM, ATTN: J3
Norfolk, VA 23511-5105........................1

Commanding Officer, LANTCOM, ATTN: J07401
Norfolk, VA 23511-5105........................1

Commanding Officer, LANTCOM, Code 34, Bldg. NH 95
Norfolk, VA 23511-5105.........................

8th US Army, ATTN: EACJ-FD-U
APO San Francisco, CA 96301-0009.

22 AF/DOC
Travis AFB, CA 94535.........................2

4602 CPUSS/ADBRH-P
Peterson AFB, CO 80914........................1

Defen!se Technical Information Center, Cameron Station
Alexandria, VA 22314.........................2

Det 2, HQ AWS/XOOOX, Weather Support Division, Room BD927,
The Pentagon, Washington, DC 20330 1

1-2 CH-l

*Addressees Copies

Director for Command, Control, and Communications Systems, J-6,
The Joint Staff, ATTN: Chief, National Military Command Centers
Division (J-6C), The Pentagon, Washington, D.C. 20318-3000. 1

Director for Operations, J-3, The Joint Staff, ATTN: Chief,
Command Systems Operations Branch (CSOB),
The Pentagon, Washington, DC 20318-3000. 1

Director USAWC Operations Group, Box 315
Carlisle Barracks, PA 17013-5050 2

FOCCEUR, NAVEUR, Box 12
FPO New York, NY 09510-3400

HQ AAC, ATTN: J5
Elmendorf AFB, AK 99506

HQ ADCOM, ATTN: J3X
Peterson AFB, CO 80914.........................

H-Q AF Systems Command, H-Q AFSC/SCRZ
Andrews AFB, MD 20334-5000......................2

AFWMPRT/S C
Ft. Ritchie, MD 21719

HQ AF, Systems Command, HQ AFSC/MPME
Andrews AFB, MD 20334-5000.......................

HQ AF, AFDFDC/PREJ
Cunter AFB, AL 36114.........................1

HQ AF RES/DOOR
Robins AFB, CA 31098.........................1

HQ AF, SOC/XPX
H-uriburt Field, FL 32544-5000 1

HQ AF, Air Force Personnel Analysis, AFMPXAR, Room 5C360,
The Pentagon, Washington, DC 20330 1

HQ MAC, 1500 CSCP/STSW
Scott AFB, IL 62225-5431.......................2

HQ ATC, 3390 TCHTC/TTMKPQ
Keesler AFB, MS 39534-5000......................4

1-3 CH- 1

Addressees Copies

HQ Air Force Manpower Center, AFMPC/DP4DMS, Bldg. 499
Randolph AFB, TX 78150-6001................... 1

HQ Air Univers ity, ATTN: AU/S'CO
Maxwell AT"B, AL 36112-5000.................. 1

HQ Air University, ATTN: AWC/PG
Maxwell AFB, AL 36116...................

H-Q FORSCOM, WWMCCS Division, DCS0PS, Bldg. 101
Ft. Cillem, Forest Park, GA 30050.

HQ FORSCOM, ATTN: AFOP-OC
Ft. McPherson, CA 30330-6000

HQ FORSC0M, FCJ6-WWS, Bldg. 200
Ft. McPherson, GA 30330-6000............... 1

H-Q MAC/SCDS
Scott AFB, IL 62225-5431..................

HQ MAC/XOOX
Scott AFB, IL 62225....................

HQ MAC/XOOXA
Scott AFB, IL 62225-6001................... 1

HQ PACAF/SCSW
Hickam AFB, HI 96853-6343.

HQ PACAF/DOXO
Hickam AFB, HI 96853-6343 1

HQ SAC/DOCFS
Offut AFB, NE 68113-5000

HQ SAC/SCCS
Offut AFB, NE 68113-5000 1

HQ SAC/SCOSFWC
Offut AFB, NE 68113-5001 2

HQ SOUTHCOM, Code SCJ6-ASD
APO Miami, FL 34003-0226.......................5

1912th CSGP/DOR
Langley AFB, VA 23665-6345......................2

1-4 CH- 1

Addressees Copies

HQ -'NhC/D0CS
Langley AFB, VA 23665-6345 3

HQ USCINCPAC-D, J66213, Box 32A
Camp Smith, HI 96861-5025. 1

H-Q USEUC0M, ATTN: ECDSC-XS
APO New York, NY 09128-4209. 2

HQ USZUCOM, ATTN: ECJ3-OD
APO New York, NY 09128-4209. 1

H-Q US Force Korea, J6 JCIS- ACTIVITY, J6-JCIS-WA
APO San Francisco, CA 96301-0010 2

HQ US Force Japan, ATTN: AJGC-P
APO bzn Francisco, CA 96320. 1

HQ USEUCOM, ATTN: ECJ3-OD-R
APO New York, NY 09128-4209. 1

HQ USMC, CMC Code POR-14
Washington, DC 20380.........................1

HQ USSOUTHCOM/J6 -S
APO Miami, Fl 34003

INSCOM-AISD-IDHS, (GIPD-Systems)
Ft. Bragg, NC 28307 1

MSCPAC, Attn: P-811. WIN Site
Oakland, CA 94625-5010 1

MTMC, ATTN: MT-PLO
Washington, DC 20315.........................1

MTMC, ATTN: MT-PLS
Washington, DC 20315..........................

MTMC, MT-IMC-S, Room 428, 5611 Columbia Pike
Falls Church, VA 22041-5050 1

MTMCEA, ATTN: MTE-PL
Bayonne, NJ 07002....................

MTMCWA, ATTN: MTW-PL
Oakland, CA 94626

I-5 CH- 1

Addressees Copies

NCTS, Washington Navy Yard, Bldg. 196, ATTN: Code 50-P
Washington, DC 20374-5069 4

Naval Electronic Systems Command, NAVELEX PAX, PD 6311B, Bldg. 1363, NAS
Patuxent River, MD 20670.......................2

NGB-ARR, Room lC663, Attn: Maj. JAMISON, The Pentagon,
Washington, DC 20310-2500 1

OJCS/SAGA, Room 1D936,
The Pentagon, Washington, DC 20301 7

O0-ALC/XP0
Hill AFB, UT 84056-5990 7

PACOPSUPPEAC, Code OlS, Box 9
Pearl Harbor, HI 96860-7150 1

Puget Sound Naval Shipyard, Code 114
Bremerton, WA 98314-5000.......................5

US Air Force 7th Communications Group/DOWW
Washington, DC 20330-6345.

US Air Forces, Europe, HQ USAFE/SCIWSO,
APO New York, NY 09094-5001. 1

US Army Pacific, ATTN: ADCSOPS(APOP-OPO)
Ft Shafter, HI 96858

US European Command, ATTN: ECJ6-COD
APO New York, NY 09128-4209.

US Pacific Command, ATTN: J66221, Bldg 35, Room 336
Camp Smith, Hi 96861-5025. 1

US Southern Command, ATTN: SCJ6-A
APO Miami, FL 34003-5000 1

USAISC-MTMC, ATTN: MODS Team, Room 526
Falls Church, VA 22041-5050

USCENTCOM, CSSE-DEW
MacDill AFB, FL 33608-7001......................1

USSOCOM, ATTN: S0J6-CS, Bldg 501
MacDill AFB, FL 33608

1-6 CH- 1

*Addressees Copies

USTRANSCOM, ATTN: TGJ6-SS
Scott AFB, IL 62225

USTRANSCOM/TGJ 3,/4JT
Scott AFB, IL 62225-7001.......................1

WESTCOM, ATTN: APOP-OPP
Ft Shafter, HI *6858 1

1-7 Cli- 1

II
lI

THIS PAGE INTENTIONALLY LEFT BLANK

1-8 CH-I-i

iorm ApprovelJ

REPORT DOCUMENTATION PAGE I OBo 070 01o8

9o)De,C -1~r OIQ0fl '0' Irs. cI Ot ion I -bt afo -C * ~ O~ -el i' .- q !o. time 1or 0MB l~n 1.1t- coca -0780
h3t'e- no ,.lntdaf,nq the jata ne e, and COIOD q end,.. o -qn of ,n omtm on tna com en% rPqta.msflq 0st 10I eM te Or tt. other 4un cta of lrce

ole ,,' , 3t n2? ortO , n'al tnq sugge ons tor r ducio in, OuO"en t WajhnqTon HPaOQuJrOPV 'It- O ,CTO e at nt f nform tOin OpierIOnand Re o O, inn lls . e"Feto
Ov,% .nm wav uste 1204 Arongton JA 22202-4102 and to the Otto e)It Manaqement Jno iuOaeT P Oierwort Aeou on Ploiect W004.0 18) Wa.gttqton DC i0503

1. AGENCY USE ONLY (Leave blanx) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 February 1991 Users Manual
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Graphic Information Presentation System (GIPSY)
Users Manual

6. AUTHOR(S)

Various

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Joint Data Systems Support Center REPORT NUMBER

(JNGG) BF670, The Pentagon
Washi--+-tn , D.C. 20301-7010

UM 7-91

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Defense Communications Agency AGENCY REPORT NUMBER
Washington, D.C. 20301-7010

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Graphic Information Presentation System (GIPSY) is a general purpose
graphics and information display capability. It combines the tools of data
retrieval, information processing, formatted reports, tabular, graphic, and
geographic display into a single integrated on-line interactive system. It
is a file and data independent system that is driven by a high level user
oriented language. The graphic display capabilities were implemented using
a device independent approach which allow the single integrated system to
support multiple dissimilar devices. GIPSY automatically reconfigures
itself to the capabilities and unique requirements of the terminal to which
the user is logged onto.

The graphic display capabilities were the primary basis for the initiation

of this system. However, GIPSY very effectively serves as an information
handling system to connect the users data base to a large set of on-line

interactive query and display capabilities.

14. SUBJECT TERMS 15. NUMBER OF PAGES

426
16. PRICE CODE

17. SECURITY CLASSIFICATICN I 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

unclassified unclassified unclassified I

